Иерархия порядков сообщений — различия между версиями
Yeputons (обсуждение | вклад) (→Синхронный порядок) |
Yeputons (обсуждение | вклад) (→Синхронный порядок) |
||
Строка 51: | Строка 51: | ||
* Для любых двух событий $e \to f$ верно $T(e)<T(f)$ (обратное может быть неверно), т.е. $T$ является [[Логические часы Лампорта|логическими часами]]. | * Для любых двух событий $e \to f$ верно $T(e)<T(f)$ (обратное может быть неверно), т.е. $T$ является [[Логические часы Лампорта|логическими часами]]. | ||
}} | }} | ||
+ | Другими словами, можно рисовать стрелочки доставки сообщений строго вертикально. | ||
Пример нарушения (причинно-согласованность не нарушена): | Пример нарушения (причинно-согласованность не нарушена): | ||
[[Файл:distributed-order-sync-wrong.png|400px]] | [[Файл:distributed-order-sync-wrong.png|400px]] |
Версия 10:30, 3 июня 2019
В распределённых системах могут быть разные гарантии порядка доставки отправленных сообщений. Более того: иногда программисты могут неявно предполагать тот или иной порядок и очень удивляться, когда он нарушается.
Мы рассматриваем четыре гарантии порядка сообщений, от более слабых к более сильным:
- Асинхронная передачи: никаких гарантий, только exactly-once delivery
- FIFO (First In First Out order)
- Причинно-согласованный порядок (causally consistent ordering, от слова cause, а не casual)
- Синхронный порядок
Можно использовать различные алгоритмы, чтобы получить из более слабой гарантии более сильную.
При добавлении multicast/broadcast сообщений возникают свои проблемы, там нужно смотреть на общий порядок сообщений.
Содержание
FIFO
Не существует пары сообщений $m, n \in M$ таких, что $snd(m) < snd(n) \land rcv(n) < rcv(m)$ (тут $<$ работает только если два события произошли в одном процессе).
Переформулировка: для каждой упорядоченной пары процессов $(A, B)$ сообщения приходят к $B$ в том же порядке, в котором они отправлены $A$.
Пример нарушения:
Причинно-согласованный порядок
Как FIFO, только вместо $<$ написали $\to$: не существует пары сообщений $m, n \in M$ таких, что $snd(m) \to snd(n) \land rcv(n) \to rcv(m)$.
Пример нарушения (пара сообщений $m=(a, b)$ и $n=(d, e)$):
Неверная переформулировка
На лекции не было, но может казаться правдоподобным.
Если есть события $a, a', b, b'$, причём $a<a'$, $proc(b)=proc(b')$ (взяли пару процессов и два события в каждом), $a\to b$ и $a' \to b'$ (взяли цепочки сообщений между ними), то $b < b'$ (порядок сообщений не меняется).
Проблема в том, что $a \to b$ может начаться не с сообщения, а с нескольких переходов внутри $proc(a)$:
P --a---a'--x---- \ \ Q -------b'---b--
Синхронный порядок
Можно считать, что сообщения доставляются мгновенно. В сочетании с линейным порядком событий внутри процессов получаем
Определение: |
В системе есть синхронный порядок сообщений, если всем сообщениям можно сопоставить время $T(m)$ (число) так, что верно:
|
Другими словами, можно рисовать стрелочки доставки сообщений строго вертикально.
Пример нарушения (причинно-согласованность не нарушена):