Бинарное отношение — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(См. также)
Строка 17: Строка 17:
 
Примерами множеств с введёнными на них бинарными отношениями являются [[Ориентированный граф|графы]] и частично упорядоченные множества.
 
Примерами множеств с введёнными на них бинарными отношениями являются [[Ориентированный граф|графы]] и частично упорядоченные множества.
  
 +
== Степень отношений ==
 +
Пусть ''R'' - отношение на множестве 'A'.
 +
{{Определение
 +
|definition =
 +
'''Степенью''' отношения '''R''' на множестве '''A''' называется его композиция с самим собой:
 +
 +
<math>R^n \  \stackrel{\mathrm{def}}{=} \  R_1 \circ \dots  \circ R_n</math>
 +
 +
}}
 
== Свойства отношений ==
 
== Свойства отношений ==
 
Для <math>R \subset A^2</math> определены свойства:
 
Для <math>R \subset A^2</math> определены свойства:

Версия 01:41, 16 января 2011

Определение

Определение:
Бинарным отношением R из множества A в множество B называется подмножество прямого произведения A и B и обозначается: [math]R \subset \Alpha \times \Beta[/math]


Часто используют инфиксную форму записи: [math]aRb, \ \langle x, y \rangle\in R[/math]

Если отношение определено на множестве A то возможно следующее определение:

Определение:
Бинарным(или двуместным) отношением R на множестве A называется множество упорядоченных пар элементов этого множества

Примерами множеств с введёнными на них бинарными отношениями являются графы и частично упорядоченные множества.

Степень отношений

Пусть R - отношение на множестве 'A'.

Определение:
Степенью отношения R на множестве A называется его композиция с самим собой: [math]R^n \ \stackrel{\mathrm{def}}{=} \ R_1 \circ \dots \circ R_n[/math]

Свойства отношений

Для [math]R \subset A^2[/math] определены свойства:

Виды отношений

Выделяются следующие виды отношений:

  • квазипорядка - рефлексивное транзитивное
  • эквивалентности - рефлексивное симметричное транзитивное
  • частичного порядка - рефлексивное антисимметричное транзитивное
  • строгого порядка -антирефлексивное антисимметричное транзитивное
  • линейного порядка -полное антисимметричное транзитивное
  • доминирования - антирефлексивное асимметричное

Примеры отношений

  • Примеры рефлексивных отношений: равенство, одновременность, сходство.
  • Примеры нерефлексвных отношений: «заботиться о», «развлекать», «нервировать».
  • Примеры транзитивных отношений: «больше», «меньше», «равно», «подобно», «выше», «севернее».
  • Примеры симметричных отношений: равенство (=), неравенство, отношение эквивалентности, подобия, одновременности, некоторые отношения родства (например, отношение братства).
  • Примеры антисимметричных отношений: больше, меньше, больше или равно.
  • Примеры асимметричных отношений: отношение «больше» (>) и «меньше» (<).

См. также

Ссылки