Изменения

Перейти к: навигация, поиск
Добавлен пример 3
Тогда <tex>A(t) = B(t)</tex>, то есть производящие функции последовательностей <tex>f_0, f_0 + f_1, f_0 + f_1 + f_2, \ldots, \sum\limits_{k = 0}^{n} f_k, \ldots</tex> и <tex>f_2 - 1, f_3 - 1, \ldots, f_{n + 2} - 1, \ldots</tex> совпадают, а значит, совпадают и эти последовательности. Поэтому <tex>f_0 + f_1 + f_2 + \ldots + f_n = f_{n + 2} - 1</tex>
 
== Пример № 3 ==
 
{{Задача
|definition = Доказать, что <tex>f_0^2+f_1^2+f_2^2+\ldots+f_n^2=f_nf_{n+1}</tex>.
}}
[[Решение рекуррентных соотношений#.5Bmath.5D3.5B.2Fmath.5D_.D0.BF.D1.80.D0.B8.D0.BC.D0.B5.D1.80 | Известно]], что производящая функция последовательности <tex>f_0^2, f_1^2, \ldots, f_n^2, \ldots</tex> равна <tex>G(z) = \dfrac{1 - z}{1 - 2z - 2z^2 + z^3}.</tex>
 
Используя [[Использование производящих функций для доказательства тождеств#lemma1 | лемму]] из примера 2, найдём производящую функцию для последовательности <tex>f_0^2, f_0^2 + f_1^2, f_0^2 + f_1^2 + f_2^2, \ldots</tex>:
<br><tex>A(z) = \dfrac{1 - z}{(1 - 2z - 2z^2 + z^3)(1 - z)} = \dfrac{1}{1 - 2z - 2z^2 + z^3}.</tex><br>
 
Теперь получим производящую функцию <tex>B(z)</tex> для последовательности, соответствующей правой части <tex>(f_0f_1, f_1f_2, \ldots)</tex>:
<br><tex>b_n = f_nf_{n+1} = f_n(f_{n-1} + f_n) = f_{n-1}f_n + f_n^2 = b_{n-1} + g_n.</tex><br>
 
<br><tex>
\begin{array}{ll}
b_0 = 1 \\
b_n = b_{n-1} + g_n, \quad n\geqslant1.\\
\end{array}
</tex><br>
 
Приведём суммы к замкнутому виду:
<br><tex>
\begin{array}{ll}
B(z) = \displaystyle\sum_{n=0}^{\infty}b_nz^n = 1 + \displaystyle\sum_{n=1}^{\infty}(b_{n-1} + g_n)z^n, \\
B(z) = 1 + \displaystyle\sum_{n=1}^{\infty}b_{n-1}z^n + \displaystyle\sum_{n=1}^{\infty}g_nz^n, \\
B(z) = 1 + z\displaystyle\sum_{n=1}^{\infty}b_{n-1}z^{n-1} + \displaystyle\sum_{n=1}^{\infty}g_nz^n, \\
B(z) = 1 + z\displaystyle\sum_{n=0}^{\infty}b_nz^n + (\displaystyle\sum_{n=0}^{\infty}g_nz^n - 1), \\
B(z) = zB(z) + G(z), \\
B(z)(1 - z) = G(z), \\
\end{array}
</tex><br>
откуда получаем замкнутое выражение для производящей функции:
<br><tex>B(z) = \dfrac{G(z)}{1 - z} = \dfrac{1}{1 - 2z - 2z^2 + z^3} = A(z).</tex><br>
 
Производящие функции <tex>A(z)</tex> и <tex>B(z)</tex> равны <tex>\Rightarrow</tex> почленно равны задаваемые ими последовательности <tex>f_0^2, f_1^2, \ldots, f_n^2, \ldots</tex> и <tex>f_0f_1, f_1f_2, \ldots</tex>, а значит, и исходное равенство <tex>f_0^2+f_1^2+f_2^2+\ldots+f_n^2=f_nf_{n+1}</tex> выполняется.
==См. также==
5
правок

Навигация