Список заданий по ДМ 2019 осень — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 32: Строка 32:
 
# КНФ называется КНФ Хорна, если в каждом дизъюнкте не более одной переменной находится без отрицания. Пример: $x\wedge(x \vee \neg y \vee \neg z) \wedge (\neg x \vee \neg t)$. Предложите полиномиальный алгоритм проверки, что формула, заданная в форме КНФ Хорна имеет набор аргументов, на котором она равна 1.
 
# КНФ называется КНФ Хорна, если в каждом дизъюнкте не более одной переменной находится без отрицания. Пример: $x\wedge(x \vee \neg y \vee \neg z) \wedge (\neg x \vee \neg t)$. Предложите полиномиальный алгоритм проверки, что формула, заданная в форме КНФ Хорна имеет набор аргументов, на котором она равна 1.
 
# Функция $f$ называется самодвойственной, если $f(\neg x_1, \ldots, \neg x_n) = \neg f(x_1, \ldots, x_n)$. Сколько существует самодвойственных функций от $n$ аргуметов?
 
# Функция $f$ называется самодвойственной, если $f(\neg x_1, \ldots, \neg x_n) = \neg f(x_1, \ldots, x_n)$. Сколько существует самодвойственных функций от $n$ аргуметов?
 +
"# Будем говорить, что функция существенно зависит от переменной $x_i$, если существует два набора аргументов, различающихся только значением $x_i$, на которых функция принимает различные значения. Сколько существует булевых функций от $n$ аргументов, существенно зависящих от всех аргументов? Достаточно привести рекуррентную формулу.
 +
# Приведите пример функции, существенно зависящей хотя бы от 3 аргументов, которая лежит во всех 5 классах Поста.
 +
# Приведите пример функции, существенно зависящей хотя бы от 3 аргументов, которая не лежит ни в одном классе Поста.
 +
# Булева функция $f(x_1, x_2, \ldots, x_n)$ называется форсируемой, если существует такое назначение $x_i=const$ , что для любых значений других переменных значение функции является константой. Например, $x_1 \wedge x_2$ является форсируемой, поскольку при $x_1 = 0$ значение функции равно 0 для любого значения $x_2$. Для каждой функции от двух переменных определите, является ли она форсируемой.
 +
# Булева функция называется симметричной, если ее значение не меняется при любой перестановке ее переменных. Сколько существует симметричных функций от $n$ переменных?
 +
# Докажите, что любую функцию от $n$ переменных можно представить с использованием стрелки Пирса формулой, длиной не больше чем $2^n\cdot poly(n)$, где $poly(n)$ - полином, общий для всех функций
 +
# Докажите, что любую монотонную функцию можно выразить через ""и"", ""или"", 0 и 1.
 +
# Докажите, что любую монотонную самодвойственую функцию можно выразить через медиану
 +
# Докажите, что если булеву функцию $f$ можно задать в форме Крома (в виде 2-КНФ), то выполнено следствие: $f(x_1, ..., x_n) = f(y_1, ..., y_n) = f(z_1, ..., z_n) = 1$ $\Rightarrow f(\langle x_1, y_1, z_1\rangle, ..., \langle x_n, y_n, z_n \rangle) = 1$
 +
# Докажите, что если выполнено следствие: $f(x_1, ..., x_n) = f(y_1, ..., y_n) = f(z_1, ..., z_n) = 1$ $\Rightarrow f(\langle x_1, y_1, z_1\rangle, ..., \langle x_n, y_n, z_n \rangle) = 1$, то булеву функцию $f$ можно задать в форме Крома.
 +
# Докажите, что если булеву функцию $f$ можно задать в форме Хорна, то выполнено следствие: $f(x_1, ..., x_n) = f(y_1, ..., y_n) = 1 \Rightarrow f(x_1\wedge y_1, ..., x_n \wedge y_n) = 1$
 +
# Докажите, что если выполнено следствие: $f(x_1, ..., x_n) = f(y_1, ..., y_n) = 1 \Rightarrow f(x_1\wedge y_1, ..., x_n \wedge y_n) = 1$, то булеву функцию $f$ можно задать в форме Хорна
 +
# Докажите, что $x_0\oplus x_1\oplus\ldots\oplus x_{2m} = \langle \neg x_0,s_1,s_2,\ldots,s_{2m}\rangle$, где $s_j=\langle x_0,x_j,x_{j+1},\ldots,x_{j+m-1},\neg x_{j+m},\neg x_{j+m+1},\ldots,\neg x_{j+2m-1}\rangle$, для удобства $x_{2m+k}$ обозначет то же, что и $x_k$ для $k \ge 1$.
 +
# Докажите, что биномиальный коэффициент $C_n^k$ нечетен тогда и только тогда, когда в двоичной записи $k$ единицы стоят только на тех позициях, где в двоичной записи $n$ также находятся единицы (иначе говоря, двоичная запись $k$ доминируется двоичной записью $n$ как двоичным вектором).
 +
# Докажите ""метод треугольника"" построения полинома Жегалкина по таблице истинности.

Версия 17:39, 24 сентября 2019

  1. Пусть $R$ и $S$ - рефлексивные отношения на $A$. Будет ли рефлексивным их а) объединение? б) пересечение? В этом и следующих заданиях, если ответ отрицательный, при демонстрации контрпримера удобно использовать представление отношения в виде ориентированного графа.
  2. Пусть $R$ и $S$ - симметричные отношения на $A$. Будет ли симметричным их а) объединение? б) пересечение?
  3. Пусть $R$ и $S$ - транзитивные отношения на $A$. Будет ли транзитивным их а) объединение? б) пересечение?
  4. Пусть $R$ и $S$ - антисимметричные отношения на $A$. Будет ли антисимметричным их а) объединение? б) пересечение?
  5. Напомним, что композиция отношений $R$ и $S$ это отношение $T=RS$, где $xTy$, если найдется $z$, такой что $xRz$ и $zSy$. Пусть $R$ и $S$ - транзитивные отношения на $A$. Будет ли транзитивной их композиция?
  6. Пусть $R$ и $S$ - антисимметричные отношения на A. Будет ли антисимметричной их композиция?
  7. Определим $R^{-1}$ следующим образом: если $xRy$, то $yR^{-1}x$. Выполнено ли соотношение $RR^{-1} = I$, где $I$ - отношение равенства? Выполнен ли закон сложения степенией $R^iR^j=R^{i+j}$, если $i$ и $j$ разного знака?
  8. Пусть $R$ обладает свойством $X$. Будет ли обладать свойством $X$ отношение $R^{-1}$? Следует проанализировать $X$ - рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность
  9. Постройте пример рефлексивного, симметричного, но не транзитивного отношения
  10. Постройте пример рефлексивного, антисимметричного, но не транзитивного отношения
  11. Постройте пример отношения, которое не симметрично и не антисимметрично
  12. Постройте пример отношения, которое симметрично и антисимметрично
  13. Является ли отношение $R$, такое что $(a, b) R (c, d)$, если $ad = bc$ на ${\mathbb Z}^+ \times {\mathbb N}$ отношением эквивалентности?
  14. Может ли отношение частичного порядка быть отношением эквивалентности? Если да, то в каких случаях?
  15. Можно ли в определении отношения эквивалентности убрать требование рефлексивности отношения, потому что оно следует из симметричности и транзитивности?
  16. Транзитивный остов. Задано антисимметричное транзитивное отношение $R$ на $X$. Предолжите полиномиальный алгоритм построения отношения $S$, такого что $S^+=R$, причем в $S$ содержится минимальное число пар элементов.
  17. В предыдущем задании требование транзитивности опустить нельзя. Задано антисимметричное отношение $R$ на $X$. Докажите, что если существует полиномиальный алгоритм построения отношения $S$, такого что $S \subset R$ и $S^+=R^+$, причем в $S$ содержится минимальное число пар элементов, то можно проверить, есть ли в графе гамильтонов цикл (цикл, проходящий по каждой вершине графа ровно один раз) за полиномиальное время.
  18. СКНФ. Будем называть формулу для функции совершенной конъюнктивной нормальной формой, если ее эта формула является конъюнкцией клозов, каждый из которых представляет дизъюнкцию переменных и их отрицаний, причем каждая переменная встречается в каждом клозе ровно один раз. Докажите, что любую функцию, кроме тождественной 1, можно представить в виде СКНФ.
  19. Стрелка Пирcа (NOR) - булева функция $a \downarrow b = \neg (a \vee b)$. Выразите в явном виде "и", "или" и "не" через стрелку Пирса
  20. Штрих Шеффера (NAND) - булева функция $a \uparrow b = \neg (a \wedge b)$. Выразите в явном виде "и", "или" и "не" через штрих Шеффера
  21. Булева функция называется пороговой, если $f(x_1, x_2, \ldots, x_n) = 1$ тогда и только тогда, когда $a_1x_1+a_2x_2+\ldots+a_nx_n \ge b$, где $a_i$ и $b$ - вещественные числа. Докажите, что "и", "или", "не" - пороговые функции.
  22. Приведите пример непороговой функции
  23. Можно ли "и", "или" и "не" выразить через функции из множества $\{x\oplus y, x = y\}$?
  24. Можно ли "и", "или" и "не" выразить через функции из множества $\{x\to y, {\mathbf 0}\}$?
  25. Можно ли "и", "или" и "не" выразить через функции из множества $\{\langle xyz\rangle, \neg x\}$?
  26. Можно ли "и", "или" и "не" выразить через функции из множества $\{{\mathbf 0}, \langle xyz\rangle, \neg x\}$?
  27. Можно ли выразить "и" через "или"?
  28. Медиана $2n+1$ булевского значения равна 1 если и только если среди аргументов больше 1. Выразите медиану 5 через медиану 3
  29. Выразите медиану $2n+1$ через медиану 3
  30. Рассмотрим булеву функцию $f$. Обозначим как $N(f)$ число наборов аргументов, на которых $f$ равна 1. Например, $N(\vee) = 3$. Обозначим как $\Sigma(f)$ сумму всех наборов аргументов, на которых $f$ равна 1 как векторов. Например, $\Sigma(\vee) = (2, 2)$. Докажите, что если для пороговой функции $f$ и функции $g$ выполнено $N(f) = N(g)$ и $\Sigma(f) = \Sigma(g)$, то $f = g$
  31. Говорят, что формула имеет вид 2-КНФ, если она имеет вид $(t_{11}\vee t_{12})\wedge(t_{21}\vee t_{22})\wedge\ldots$, где $t_{ij}$ представляет собой либо переменную, либо ее отрицание (в каждом дизъюнкте ровно два терма). Предложите полиномиальный алгоритм проверки, что формула, заданная в 2-КНФ имеет набор значений переменных, на которых она имеет значение 1.
  32. КНФ называется КНФ Хорна, если в каждом дизъюнкте не более одной переменной находится без отрицания. Пример: $x\wedge(x \vee \neg y \vee \neg z) \wedge (\neg x \vee \neg t)$. Предложите полиномиальный алгоритм проверки, что формула, заданная в форме КНФ Хорна имеет набор аргументов, на котором она равна 1.
  33. Функция $f$ называется самодвойственной, если $f(\neg x_1, \ldots, \neg x_n) = \neg f(x_1, \ldots, x_n)$. Сколько существует самодвойственных функций от $n$ аргуметов?

"# Будем говорить, что функция существенно зависит от переменной $x_i$, если существует два набора аргументов, различающихся только значением $x_i$, на которых функция принимает различные значения. Сколько существует булевых функций от $n$ аргументов, существенно зависящих от всех аргументов? Достаточно привести рекуррентную формулу.

  1. Приведите пример функции, существенно зависящей хотя бы от 3 аргументов, которая лежит во всех 5 классах Поста.
  2. Приведите пример функции, существенно зависящей хотя бы от 3 аргументов, которая не лежит ни в одном классе Поста.
  3. Булева функция $f(x_1, x_2, \ldots, x_n)$ называется форсируемой, если существует такое назначение $x_i=const$ , что для любых значений других переменных значение функции является константой. Например, $x_1 \wedge x_2$ является форсируемой, поскольку при $x_1 = 0$ значение функции равно 0 для любого значения $x_2$. Для каждой функции от двух переменных определите, является ли она форсируемой.
  4. Булева функция называется симметричной, если ее значение не меняется при любой перестановке ее переменных. Сколько существует симметричных функций от $n$ переменных?
  5. Докажите, что любую функцию от $n$ переменных можно представить с использованием стрелки Пирса формулой, длиной не больше чем $2^n\cdot poly(n)$, где $poly(n)$ - полином, общий для всех функций
  6. Докажите, что любую монотонную функцию можно выразить через ""и"", ""или"", 0 и 1.
  7. Докажите, что любую монотонную самодвойственую функцию можно выразить через медиану
  8. Докажите, что если булеву функцию $f$ можно задать в форме Крома (в виде 2-КНФ), то выполнено следствие: $f(x_1, ..., x_n) = f(y_1, ..., y_n) = f(z_1, ..., z_n) = 1$ $\Rightarrow f(\langle x_1, y_1, z_1\rangle, ..., \langle x_n, y_n, z_n \rangle) = 1$
  9. Докажите, что если выполнено следствие: $f(x_1, ..., x_n) = f(y_1, ..., y_n) = f(z_1, ..., z_n) = 1$ $\Rightarrow f(\langle x_1, y_1, z_1\rangle, ..., \langle x_n, y_n, z_n \rangle) = 1$, то булеву функцию $f$ можно задать в форме Крома.
  10. Докажите, что если булеву функцию $f$ можно задать в форме Хорна, то выполнено следствие: $f(x_1, ..., x_n) = f(y_1, ..., y_n) = 1 \Rightarrow f(x_1\wedge y_1, ..., x_n \wedge y_n) = 1$
  11. Докажите, что если выполнено следствие: $f(x_1, ..., x_n) = f(y_1, ..., y_n) = 1 \Rightarrow f(x_1\wedge y_1, ..., x_n \wedge y_n) = 1$, то булеву функцию $f$ можно задать в форме Хорна
  12. Докажите, что $x_0\oplus x_1\oplus\ldots\oplus x_{2m} = \langle \neg x_0,s_1,s_2,\ldots,s_{2m}\rangle$, где $s_j=\langle x_0,x_j,x_{j+1},\ldots,x_{j+m-1},\neg x_{j+m},\neg x_{j+m+1},\ldots,\neg x_{j+2m-1}\rangle$, для удобства $x_{2m+k}$ обозначет то же, что и $x_k$ для $k \ge 1$.
  13. Докажите, что биномиальный коэффициент $C_n^k$ нечетен тогда и только тогда, когда в двоичной записи $k$ единицы стоят только на тех позициях, где в двоичной записи $n$ также находятся единицы (иначе говоря, двоичная запись $k$ доминируется двоичной записью $n$ как двоичным вектором).
  14. Докажите ""метод треугольника"" построения полинома Жегалкина по таблице истинности.