Рефлексивное отношение — различия между версиями
(→Источники) |
Rybak (обсуждение | вклад) м (looks better now?) |
||
Строка 1: | Строка 1: | ||
− | В математике [[ | + | В математике [[Определение отношения|бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется ''рефлексивным'', если всякий элемент этого множества находится в отношении <tex>R</tex> с самим собой. |
{{Определение | {{Определение | ||
|definition = | |definition = | ||
Строка 6: | Строка 6: | ||
Свойство рефлексивности при заданных отношениях [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графом]] состоит в том, что каждая вершина имеет петлю — дугу (x, x), а [[Матрица смежности графа|матрица смежности]] этого графа на главной диагонали имеет единицы. | Свойство рефлексивности при заданных отношениях [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графом]] состоит в том, что каждая вершина имеет петлю — дугу (x, x), а [[Матрица смежности графа|матрица смежности]] этого графа на главной диагонали имеет единицы. | ||
− | Если это условие не выполнено ни для какого элемента множества <tex>X</tex>, то отношение <tex>R</tex> называется | + | Если это условие не выполнено ни для какого элемента множества <tex>X</tex>, то отношение <tex>R</tex> называется ''антирефлексивным''. |
{{Определение | {{Определение | ||
Строка 13: | Строка 13: | ||
}} | }} | ||
− | Если | + | Если антирефлексивное отношение задано графом, то ни у одной вершины не будет ''петли'' — дуги (x, x), а в матрице смежности на главной диагонали будут нули. |
== Примеры рефлексивных отношений == | == Примеры рефлексивных отношений == | ||
* Отношения '''эквивалентности''': | * Отношения '''эквивалентности''': | ||
− | ** отношение ''равенства'' <tex>=\;</tex> | + | ** отношение ''равенства'' <tex>=\;</tex> |
− | ** отношение ''сравнимости по модулю'' | + | ** отношение ''сравнимости по модулю'' |
− | ** отношение ''параллельности'' прямых и плоскостей | + | ** отношение ''параллельности'' прямых и плоскостей |
− | ** отношение ''подобия'' геометрических фигур | + | ** отношение ''подобия'' геометрических фигур |
* Отношения '''[[Частичный порядок|частичного порядка]]''': | * Отношения '''[[Частичный порядок|частичного порядка]]''': | ||
− | ** отношение ''нестрогого неравенства'' <tex>\leqslant</tex> | + | ** отношение ''нестрогого неравенства'' <tex>\leqslant</tex> |
− | ** отношение ''нестрогого подмножества'' <tex> \subseteq </tex> | + | ** отношение ''нестрогого подмножества'' <tex> \subseteq </tex> |
− | ** отношение ''делимости'' <tex>\,\vdots\,</tex> | + | ** отношение ''делимости'' <tex>\,\vdots\,</tex> |
− | * Отношение "иметь одинаковый цвет волос" | + | * Отношение "иметь одинаковый цвет волос" |
− | * Отношение "принадлежать одному виду" | + | * Отношение "принадлежать одному виду" |
== Примеры антирефлексивных отношений == | == Примеры антирефлексивных отношений == | ||
− | * отношение ''строгого неравенства'' <tex>< | + | * отношение ''строгого неравенства'' <tex><</tex> |
− | * отношение ''строгого подмножества'' <tex>\subset</tex> | + | * отношение ''строгого подмножества'' <tex>\subset</tex> |
− | * отношение "быть родителем" | + | * отношение "быть родителем" |
==Источники== | ==Источники== | ||
* [http://clck.yandex.ru/redir/AiuY0DBWFJ4ePaEse6rgeAjgs2pI3DW99KUdgowt9XvqxGyo_rnZJpNjfFDg3rinLMdsQAkGx2smuCLveeC_k119Ad5jA0qk2DT12P9TjpgYadgOcxdz7pQajmIVBLt-se9i5T87eyh53lnz1TTGH8b-L3yGsvGmoExr118FK4k?data=UlNrNmk5WktYejR0eWJFYk1LdmtxamVnNEJRWnJseWwyX0JzSlhyc2l1YUpDWmZVRlU4RUVKOUl5cndWOXVodHRpQVhJeldXOV9INlQ3cTV2dDdZaGl0ZzFhTG5nc05uSFV1Nm1sUnJQZHliN2hDVHJFZlUwcUJxZVRqNncwMWxfcVIyenFtZ0YyRENTTTloMWZrd2xaTWs5bnpCd3ZSLUpRSzBCLXRoNEZMZENxLTRJOU1zY1J5SmZxNTF5blpucW4yYjlpanZxTlkzQkVxM2ptN3BUMjNhdGZ3dWVkUkZ6RUpHc0dROVJpTE93X3NRYVBrbmZrQy1iX0c2QkZpeVlTVW94UkVXQThoWUNlMnlOWk9vRmxON2FnaE0yYVp2aTlhN3U4MDdxdE0&b64e=2&sign=1941e1100b2d6a7f5e07d76c62b9a449&keyno=0 Wikipedia | Рефлексивное отношение] | * [http://clck.yandex.ru/redir/AiuY0DBWFJ4ePaEse6rgeAjgs2pI3DW99KUdgowt9XvqxGyo_rnZJpNjfFDg3rinLMdsQAkGx2smuCLveeC_k119Ad5jA0qk2DT12P9TjpgYadgOcxdz7pQajmIVBLt-se9i5T87eyh53lnz1TTGH8b-L3yGsvGmoExr118FK4k?data=UlNrNmk5WktYejR0eWJFYk1LdmtxamVnNEJRWnJseWwyX0JzSlhyc2l1YUpDWmZVRlU4RUVKOUl5cndWOXVodHRpQVhJeldXOV9INlQ3cTV2dDdZaGl0ZzFhTG5nc05uSFV1Nm1sUnJQZHliN2hDVHJFZlUwcUJxZVRqNncwMWxfcVIyenFtZ0YyRENTTTloMWZrd2xaTWs5bnpCd3ZSLUpRSzBCLXRoNEZMZENxLTRJOU1zY1J5SmZxNTF5blpucW4yYjlpanZxTlkzQkVxM2ptN3BUMjNhdGZ3dWVkUkZ6RUpHc0dROVJpTE93X3NRYVBrbmZrQy1iX0c2QkZpeVlTVW94UkVXQThoWUNlMnlOWk9vRmxON2FnaE0yYVp2aTlhN3U4MDdxdE0&b64e=2&sign=1941e1100b2d6a7f5e07d76c62b9a449&keyno=0 Wikipedia | Рефлексивное отношение] |
Версия 01:43, 17 января 2011
В математике бинарное отношение на множестве называется рефлексивным, если всякий элемент этого множества находится в отношении с самим собой.
Определение: |
Отношение | называется рефлексивным, если .
Свойство рефлексивности при заданных отношениях графом состоит в том, что каждая вершина имеет петлю — дугу (x, x), а матрица смежности этого графа на главной диагонали имеет единицы.
Если это условие не выполнено ни для какого элемента множества
, то отношение называется антирефлексивным.
Определение: |
Отношение | называется антирефлексивным, если .
Если антирефлексивное отношение задано графом, то ни у одной вершины не будет петли — дуги (x, x), а в матрице смежности на главной диагонали будут нули.
Примеры рефлексивных отношений
- Отношения эквивалентности:
- отношение равенства
- отношение сравнимости по модулю
- отношение параллельности прямых и плоскостей
- отношение подобия геометрических фигур
- Отношения частичного порядка:
- отношение нестрогого неравенства
- отношение нестрогого подмножества
- отношение делимости
- Отношение "иметь одинаковый цвет волос"
- Отношение "принадлежать одному виду"
Примеры антирефлексивных отношений
- отношение строгого неравенства
- отношение строгого подмножества
- отношение "быть родителем"