Матрица инцидентности графа — различия между версиями
(→Инцидентность ребра и вершины) |
(→Инцидентность ребра и вершины) |
||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Инцидентность''' - отношение между ребром и его концевыми вершинами, т. е. если в графе <tex>G = (V,E) | + | '''Инцидентность''' - отношение между ребром и его концевыми вершинами, т. е. если в графе <tex>G = (V,E), u \in V, v \in V</tex> - вершины, а <tex>e \in E</tex> - соединяющее их ребро <tex>e = (u,v)</tex>, то вершина <tex>u</tex> и ребро <tex>e</tex> инцидентны, вершина <tex>v</tex> и ребро <tex>e</tex> также инцидентны. |
}} | }} | ||
Версия 04:13, 17 января 2011
Содержание
Инцидентность ребра и вершины
Определение: |
Инцидентность - отношение между ребром и его концевыми вершинами, т. е. если в графе | - вершины, а - соединяющее их ребро , то вершина и ребро инцидентны, вершина и ребро также инцидентны.
Определения для ориентированного и неориентированного графов
Определение: |
Матрицей инцидентности (инциденций) неориентированного графа называется матрица | , для которой , если вершина инцидентна ребру , в противном случае .
Определение: |
Матрицей инцидентности (инциденций) ориентированного графа называется матрица | , для которой , если вершина является началом дуги , , если является концом дуги , в остальных случаях .
Пример
Граф | Матрица инцидентности | Ориентированный граф | Матрица инцидентности |
---|---|---|---|
Источники
Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы — Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001, 288 стр.