Участник:Mk17.ru — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(См. также)
(Условная и взаимная энтропия)
Строка 70: Строка 70:
 
<tex>\xi_t+1 = \xi_t + \eta_t, P{\eta_t = 1|\xi_t 6= 0 ∨ \xi_t 6= n} = p, P{\eta_t = −1|\xi_t 6= 0 ∨ \xi_t 6= n} = q
 
<tex>\xi_t+1 = \xi_t + \eta_t, P{\eta_t = 1|\xi_t 6= 0 ∨ \xi_t 6= n} = p, P{\eta_t = −1|\xi_t 6= 0 ∨ \xi_t 6= n} = q
 
и P{\eta = 0|\xi_t = 0 ∨ \xi_t = n} = 1. </tex>
 
и P{\eta = 0|\xi_t = 0 ∨ \xi_t = n} = 1. </tex>
 
== Условная и взаимная энтропия ==
 
{{Определение
 
|definition = '''Условная энтропия''' (англ. ''conditional entropy'') {{---}} определяет количество остающейся энтропии (то есть, остающейся неопределенности) события <tex>A</tex> после того, как становится известным результат события <tex>B</tex>. Она называется ''энтропия <tex>A</tex> при условии <tex>B</tex>'', и обозначается <tex>H(A|B)</tex>
 
}}
 
<tex>H(A|B)= - \sum\limits_{i=1}^{m}p(b_i)\sum\limits_{j=1}^{n} p(a_j|b_i)\log_2p(a_j|b_i) </tex>
 
{{Определение
 
|definition = '''Взаимная энтропия''' (англ. ''joint entropy'') {{---}} энтропия объединения двух событий <tex>A</tex> и <tex>B</tex>. 
 
}}
 
<tex> H(A \cap B) = -\sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2p(a_j \cap b_i) </tex>
 
{{Утверждение
 
|statement= <tex> H(A \cap B) = H(A|B)+H(B)=H(B|A)+H(A) </tex>
 
|proof= По формуле условной вероятности <tex dpi="130"> p(a_j|b_i)=\dfrac{p(a_j \cap b_i)}{p(b_i)} </tex>
 
 
<tex dpi="140"> H(A|B)=-\sum\limits_{i=1}^{m}p(b_i)\sum\limits_{j=1}^{n} p(a_j|b_i)\log_2p(a_j|b_i) </tex> <tex dpi="140">= - \sum\limits_{i=1}^{m}p(b_i) \sum\limits_{j=1}^{n} \dfrac{p(a_j \cap b_i)}{p(b_i)}\log_2 \dfrac {p(a_j \cap b_i)}{p(b_i)} = -\sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2 \dfrac {p(a_j \cap b_i)}{p(b_i)} = </tex>
 
<tex dpi="140"> = -\sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2p(a_j \cap b_i) + \sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2p(b_i) </tex><tex dpi="140">= H(A \cap B) +\sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2p(b_i) = </tex>
 
 
<tex dpi="140"> = H(A \cap B) +\sum\limits_{i=1}^{m} \log_2p(b_i)\sum\limits_{j=1}^{n} p(a_j \cap b_i) = H(A \cap B) +\sum\limits_{i=1}^{m} \log_2p(b_i)p(b_i) = </tex><tex dpi="140">H(A \cap B) - H(B) </tex>
 
 
Таким образом получаем, что: <tex> H(A \cap B)= H(A|B)+H(B) </tex>
 
 
Аналогично: <tex>H(B \cap A)= H(B|A)+H(A) </tex>
 
 
Из двух полученных равенств следует, что <tex> H(A|B)+H(B)=H(B|A)+H(A) </tex>
 
}}
 
  
 
== Источники информации ==
 
== Источники информации ==

Версия 19:22, 25 мая 2020

Определение

Определение:
Случайное блуждание (англ. Random walk) — математическая модель процесса случайных изменений — шагов в дискретные моменты времени. При этом предполагается, что изменение на каждом шаге не зависит от предыдущих и от времени. В силу простоты анализа эта модель часто используется в разных сферах в математике, экономике, физике, но, как правило, такая модель является существенным упрощением реального процесса.


Случайные блуждания по прямой

Представим частицу, которая движется по целым точкам на прямой. Перемещение из одной точки в другую происходит через равные промежутки времени. За один шаг частица из точки k с положительной вероятностью p перемещается в точку [math]k + 1[/math] и с положительной вероятностью [math]q = 1 − p[/math] перемещается в точку k − 1. Физической системе соответствует цепь Маркова:

  • [math]\xi_n = \xi_{n-1} + \eta_n = \xi_0 + S_n, \eta_n = \begin{cases} 1 &\text{с вероятностью p}\\-1 &\text{с вероятностью 1 - p} \end{cases}[/math]

Заметим, что вернуться в какую-либо точку можно только за четное число шагов.

Вероятность смещения на d единиц вправо или влево

Выведем распределение случайной величины [math]\xi_n[/math]. Будем считать, что [math]P(\xi_0 = m) = 1[/math]. Это отвечает тому, что в начальный момент времени частица достоверно находилась в точке [math]x = m[/math] (здесь [math]m[/math] — фиксированное число) и затем начала случайно блуждать в соответствии с описанными выше правилами. Пусть [math]d[/math] — смещение частицы за [math]n[/math] шагов. Найдём [math]P(\xi_n = m + d)[/math] для каждого [math]d ∈ Z[/math].

Справедливо очевидное равенство:

  • [math]P(\xi_n = m + d) = P(\xi_n = m + d | \xi_0 = m)[/math], если [math]P(\xi_0 = m) = 1.[/math]

Представление через условную вероятность удобно, если нам необходимо явно указать, где находилась частица в начальный момент времени.

Наша физическая модель с математической точки зрения в точности отвечает схеме независимых испытаний Бернулли с двумя исходами —- прыжком вправо, который мы будем называть успехом, и прыжком вправо (неудачей). В рамках этой математической модели все вероятности рассчитываются на основании распределения Бернулли. Пусть частица сделала [math]n[/math] прыжков. Вероятность того, что среди этих прыжков будет ровно [math]k[/math] прыжков вправо (или, что то же самое, [math]n−k[/math] прыжков влево) задаётся формулой:

  • [math]P = {C_{n}^k} p^k q^{n−k}, k = 0, 1, . . . , n.[/math] (1)

Смещение частицы и число прыжков влево и вправо связаны простейшим уравнением

  • [math]d = 1 · k + (−1) · (n − k) = 2k − n \quad[/math] (2)

откуда [math]k = \frac{(n + d)}{2}[/math]. Понятно, что, поскольку частица сделала ровно n прыжков, число прыжков вправо должно быть целым числом в интервале [math][0, n][/math], другими словами, [math]P(\xi_n = m + d) = 0,[/math] если [math]k = \frac{(n + d)}{2}, k \notin \{0, 1, . . . , n\}[/math]. Если же указанное ограничение выполнено, то в рамках нашей модели блужданий мы можем воспользоваться распределением Бернулли (1):

  • [math] P(\xi_n = m + d) = {C_{n}^k} p^k q^{n−k}, \quad k = \frac{(n + d)}{2} [/math], при обязательном условии [math]k ∈ {0, 1, . . . , n}.[/math] (3)

Замечание. Ограничение [math]0 \leq k \leq n [/math] по формуле (2) влечёт [math]|d| \leq n[/math]. Это можно понять и без расчётов: если [math]|d| \gt n[/math], то частица «не успевает» дойти из начальной в конечную точку за [math]n[/math] шагов, даже двигаясь строго в одном направлении (налево при [math]d \lt 0[/math] и направо при [math]d \gt 0[/math]). Ограничение на значения [math]k[/math] согласовано и с (3): биномиальный коэффициент [math]{C_{n}^k}[/math] не определён при [math] k \notin \{0, 1, . . . , n\}[/math]. Мы можем даже считать формулу (3) верной при любом [math]k[/math], если положим по определению[math]C_{n}^k = 0 [/math] для [math] k \notin \{0, 1, . . . , n\}[/math]. Число шагов [math]n[/math] и смещение [math]d[/math] должны иметь как целые числа одну чётность. Вероятность (3) не зависит от начального положения [math]m[/math] и определяется только числом шагов [math]n[/math] (номером члена последовательности) и смещением [math]d[/math]. При своём движении частица случайным образом «выбирает» одну из возможных траекторий. Для перехода из точки [math]m[/math] в точку [math]m[/math] за [math]n[/math] шагов возможными являются все те и только те траектории длины [math]n[/math], в которых ровно [math]k[/math] смещений вправо и [math]n − k[/math] смещений влево, где [math]k = \frac{(n + d)}{2}[/math]. Равенство (1) при этом можно интерпретировать так: вероятность того, что частица пройдет по одной из возможных траекторий, равна [math]p^k q^{n−k}[/math], и всего существуют [math]{C_{n}^k}[/math] таких траекторий, таким образом, [math]P = p^k*q^{n−k}+...+p^k*q^{n−k}={C_{n}^k} p^k q^{n−k}.[/math]

Задача о разорении игрока

Обсудим блуждание на примере задачи о разорении. Пусть начальный капитал [math]\xi_0[/math] первого игрока составляет [math]k[/math] рублей, а капитал второго игрока – [math](n − k)[/math] рублей. Первый игрок выигрывает или проигрывает рубль с вероятностями [math]p[/math] и [math]q[/math] соответственно. Игра продолжается до тех пор, пока капитал первого игрока не уменьшится до нуля, либо не возрастет до [math]n[/math]. Поглощение точки в правом конце отрезка [math][0, n][/math] соответствует выигрышу первого игрока. Рассмотрим конечную цепь Маркова [math]\xi_t+1 = \xi_t + \eta_t, P{\eta_t = 1|\xi_t 6= 0 ∨ \xi_t 6= n} = p, P{\eta_t = −1|\xi_t 6= 0 ∨ \xi_t 6= n} = q и P{\eta = 0|\xi_t = 0 ∨ \xi_t = n} = 1. [/math]

Источники информации