Участник:Mk17.ru — различия между версиями
(→Задача о разорении игрока) |
(notes) |
||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
− | |definition = '''Случайное блуждание''' (англ. ''Random walk'') {{---}} математическая модель процесса случайных изменений — шагов в дискретные моменты времени. При этом предполагается, что изменение на каждом шаге не зависит от предыдущих и от времени. В силу простоты анализа эта модель часто используется в разных сферах в математике, экономике, физике, но, как правило, такая модель является существенным упрощением реального процесса. | + | |definition = '''Случайное блуждание''' (англ. ''Random walk'') {{---}} математическая модель процесса случайных изменений — шагов в дискретные моменты времени. При этом предполагается, что изменение на каждом шаге не зависит от предыдущих и от времени. '''Соедини в одно предложение, переформулируй''' В силу простоты анализа эта модель часто используется в разных сферах в математике, экономике, физике, но, как правило, такая модель является существенным упрощением реального процесса. |
}} | }} | ||
Строка 10: | Строка 10: | ||
Представим частицу, которая движется по целым точкам на прямой. Перемещение из одной точки | Представим частицу, которая движется по целым точкам на прямой. Перемещение из одной точки | ||
в другую происходит через равные промежутки времени. За один шаг частица из точки k с положительной вероятностью p перемещается в точку <tex>k + 1</tex> и с положительной вероятностью <tex>q = 1 − p</tex> | в другую происходит через равные промежутки времени. За один шаг частица из точки k с положительной вероятностью p перемещается в точку <tex>k + 1</tex> и с положительной вероятностью <tex>q = 1 − p</tex> | ||
− | перемещается в точку k − 1. | + | перемещается в точку k − 1. '''Тех''' |
− | Физической системе соответствует цепь Маркова: | + | Физической системе соответствует цепь Маркова: '''лучше сделать тут кликабельным''' |
− | *<tex>\xi_n = \xi_{n-1} + \eta_n = \xi_0 + S_n, \eta_n = \begin{cases} 1 | + | *<tex>\xi_n = \xi_{n-1} + \eta_n = \xi_0 + S_n, \eta_n = \begin{cases} 1 &\text{с вероятностью p}\\-1 &\text{с вероятностью 1 - p} |
\end{cases}</tex> | \end{cases}</tex> | ||
Заметим, что вернуться в какую-либо точку можно только за четное число шагов. | Заметим, что вернуться в какую-либо точку можно только за четное число шагов. | ||
− | ==Вероятность смещения на d единиц вправо | + | ==Вероятность смещения на d единиц вправо (влево)== |
− | Выведем распределение случайной величины <tex>\xi_n</tex>. Будем считать, что <tex>P(\xi_0 = m) = 1</tex>. Это отвечает тому, что в начальный момент времени частица достоверно находилась в точке | + | Выведем распределение случайной величины <tex>\xi_n</tex>. '''Кажется, это предложение можно выкинуть и ничего не изменится''' Будем считать, что <tex>P(\xi_0 = m) = 1</tex>. Это отвечает тому, '''переформулируй, пожалуйста, не очень корректный оборот''' что в начальный момент времени частица достоверно '''лишнее слово''' находилась в точке |
<tex>x = m</tex> (здесь <tex>m</tex> — фиксированное число) и затем начала случайно блуждать в соответствии с описанными выше правилами. Пусть <tex>d</tex> — смещение частицы за <tex>n</tex> шагов. | <tex>x = m</tex> (здесь <tex>m</tex> — фиксированное число) и затем начала случайно блуждать в соответствии с описанными выше правилами. Пусть <tex>d</tex> — смещение частицы за <tex>n</tex> шагов. | ||
Найдём <tex>P(\xi_n = m + d)</tex> для каждого <tex>d ∈ Z</tex>. | Найдём <tex>P(\xi_n = m + d)</tex> для каждого <tex>d ∈ Z</tex>. | ||
− | Справедливо очевидное равенство: | + | Справедливо очевидное '''лишнее слово''' равенство: |
*<tex>P(\xi_n = m + d) = P(\xi_n = m + d | \xi_0 = m)</tex>, если <tex>P(\xi_0 = m) = 1.</tex> | *<tex>P(\xi_n = m + d) = P(\xi_n = m + d | \xi_0 = m)</tex>, если <tex>P(\xi_0 = m) = 1.</tex> | ||
Строка 29: | Строка 29: | ||
Наша физическая модель с математической точки зрения в точности отвечает | Наша физическая модель с математической точки зрения в точности отвечает | ||
− | схеме независимых испытаний Бернулли с двумя исходами —- прыжком вправо, который мы будем называть успехом, и прыжком вправо (неудачей). В рамках этой | + | схеме независимых испытаний Бернулли '''лучше сделать ссылку на конспекты, если в них это есть, или хотя бы на Википедию''' с двумя исходами —- прыжком вправо, который мы будем называть успехом, и прыжком '''лишнее определение, можно писать "перемещение" или "движение"''' вправо (неудачей). В рамках этой |
− | математической модели все вероятности рассчитываются на основании распределения Бернулли. Пусть частица сделала <tex>n</tex> прыжков. Вероятность того, что среди | + | математической модели все вероятности рассчитываются на основании распределения Бернулли. '''Лишнее предложение''' Пусть частица сделала <tex>n</tex> прыжков. Вероятность того, что среди |
этих прыжков будет ровно <tex>k</tex> прыжков вправо (или, что то же самое, <tex>n−k</tex> прыжков | этих прыжков будет ровно <tex>k</tex> прыжков вправо (или, что то же самое, <tex>n−k</tex> прыжков | ||
влево) задаётся формулой: | влево) задаётся формулой: | ||
− | *<tex>P = {C_{n}^k} p^k q^{n−k}, k = 0, 1, . . . , n | + | *<tex>P = {C_{n}^k} p^k q^{n−k}, k = 0, 1, . . . , n</tex> (1) '''Это сумма? Если да, так и напиши''' |
− | Смещение частицы и число прыжков влево и вправо связаны простейшим уравнением | + | Смещение частицы и число прыжков влево и вправо связаны простейшим '''лишнее слово''' уравнением |
− | *<tex>d = 1 · k + (−1) · (n − k) = 2k − n \quad</tex> (2) | + | *<tex>d = 1 · k + (−1) · (n − k) = 2k − n \quad</tex> (2) '''(1) и (2) разным шрифтом. И такие собственные сноски тоже лучше делать кликабельными. Можно вынести их в отдельные разделы статьи''' |
− | откуда <tex>k = \frac{(n + d)}{2}</tex>. Понятно, что, поскольку частица сделала ровно n прыжков, | + | откуда <tex>k = \frac{(n + d)}{2}</tex>. Понятно, что, поскольку частица сделала ровно n прыжков, '''Тех''' |
число прыжков вправо должно быть целым числом в интервале <tex>[0, n]</tex>, другими словами, <tex>P(\xi_n = m + d) = 0,</tex> если <tex>k = \frac{(n + d)}{2}, k \notin \{0, 1, . . . , n\}</tex>. Если же указанное | число прыжков вправо должно быть целым числом в интервале <tex>[0, n]</tex>, другими словами, <tex>P(\xi_n = m + d) = 0,</tex> если <tex>k = \frac{(n + d)}{2}, k \notin \{0, 1, . . . , n\}</tex>. Если же указанное | ||
− | ограничение выполнено, то в рамках нашей модели блужданий мы можем воспользоваться распределением Бернулли (1): | + | ограничение выполнено, то в рамках нашей модели блужданий мы можем воспользоваться распределением Бернулли (1): '''вот тут хочется кликнуть на (1)''' |
*<tex> P(\xi_n = m + d) = {C_{n}^k} p^k q^{n−k}, \quad k = \frac{(n + d)}{2} </tex>, при обязательном условии <tex>k ∈ {0, 1, . . . , n}.</tex> (3) | *<tex> P(\xi_n = m + d) = {C_{n}^k} p^k q^{n−k}, \quad k = \frac{(n + d)}{2} </tex>, при обязательном условии <tex>k ∈ {0, 1, . . . , n}.</tex> (3) | ||
Замечание. Ограничение <tex>0 \leq k \leq n </tex> по формуле (2) влечёт <tex>|d| \leq n</tex>. Это | Замечание. Ограничение <tex>0 \leq k \leq n </tex> по формуле (2) влечёт <tex>|d| \leq n</tex>. Это | ||
− | можно понять и без расчётов: если <tex>|d| > n</tex>, то частица «не успевает» дойти из начальной в конечную точку за | + | можно понять и без расчётов: если <tex>|d| > n</tex>, то частица «не успевает» '''в научных текстах не должно быть ненаучных выражений в кавычках''' дойти из начальной в конечную точку за |
<tex>n</tex> шагов, даже двигаясь строго в одном направлении | <tex>n</tex> шагов, даже двигаясь строго в одном направлении | ||
(налево при <tex>d < 0</tex> и направо при <tex>d > 0</tex>). Ограничение на значения <tex>k</tex> согласовано | (налево при <tex>d < 0</tex> и направо при <tex>d > 0</tex>). Ограничение на значения <tex>k</tex> согласовано | ||
Строка 55: | Строка 55: | ||
шагов <tex>n</tex> (номером члена последовательности) | шагов <tex>n</tex> (номером члена последовательности) | ||
и смещением <tex>d</tex>. | и смещением <tex>d</tex>. | ||
− | При своём движении частица случайным образом «выбирает» одну из возможных траекторий. Для перехода из точки | + | При своём движении частица случайным образом «выбирает» '''то же самое''' одну из возможных траекторий. Для перехода из точки |
<tex>m</tex> в точку <tex>m</tex> за <tex>n</tex> шагов возможными являются все те и только те траектории длины | <tex>m</tex> в точку <tex>m</tex> за <tex>n</tex> шагов возможными являются все те и только те траектории длины | ||
<tex>n</tex>, в которых ровно <tex>k</tex> смещений вправо и <tex>n − k</tex> смещений влево, где <tex>k = \frac{(n + | <tex>n</tex>, в которых ровно <tex>k</tex> смещений вправо и <tex>n − k</tex> смещений влево, где <tex>k = \frac{(n + | ||
d)}{2}</tex>. Равенство (1) при этом можно интерпретировать так: вероятность того, что частица пройдет по одной из | d)}{2}</tex>. Равенство (1) при этом можно интерпретировать так: вероятность того, что частица пройдет по одной из | ||
возможных траекторий, равна <tex>p^k q^{n−k}</tex>, и всего существуют <tex>{C_{n}^k}</tex> таких траекторий, таким образом, <tex>P = p^k*q^{n−k}+...+p^k*q^{n−k}={C_{n}^k} p^k q^{n−k}.</tex> | возможных траекторий, равна <tex>p^k q^{n−k}</tex>, и всего существуют <tex>{C_{n}^k}</tex> таких траекторий, таким образом, <tex>P = p^k*q^{n−k}+...+p^k*q^{n−k}={C_{n}^k} p^k q^{n−k}.</tex> | ||
+ | |||
+ | '''Хотелось бы чуть структурировать, выглядит, как стена текста. Оформить замечание в специальную сноску или в отдельный блок, выделить главное. Сейчас замечание выглядит важнее, чем факт, к которому оно приложено, а это не должно быть так''' | ||
== Задача о разорении игрока == | == Задача о разорении игрока == | ||
− | Обсудим блуждание на примере задачи о разорении. Пусть начальный капитал <tex>\xi_0</tex> первого | + | Обсудим блуждание на примере задачи о разорении. '''Лишнее предложение''' Пусть начальный капитал <tex>\xi_0</tex> первого |
− | игрока составляет <tex>k</tex> рублей, а капитал второго игрока – <tex>(n − k)</tex> рублей. Первый игрок выигрывает | + | игрока составляет <tex>k</tex> рублей, а капитал второго игрока '''поставь теховское тире''' – <tex>(n − k)</tex> рублей. Первый игрок выигрывает |
или проигрывает рубль с вероятностями <tex>p</tex> и <tex>q</tex> соответственно. Игра продолжается до тех пор, пока | или проигрывает рубль с вероятностями <tex>p</tex> и <tex>q</tex> соответственно. Игра продолжается до тех пор, пока | ||
капитал первого игрока не уменьшится до нуля, либо не возрастет до <tex>n</tex>. Поглощение точки в правом | капитал первого игрока не уменьшится до нуля, либо не возрастет до <tex>n</tex>. Поглощение точки в правом | ||
Строка 84: | Строка 86: | ||
*<tex> \quad p_{kn}(t + 1) = p*p_{k+1,n}(t) + q*p_{k−1,n}(t), \quad k = 1, 2, . . . , n − 1.</tex> | *<tex> \quad p_{kn}(t + 1) = p*p_{k+1,n}(t) + q*p_{k−1,n}(t), \quad k = 1, 2, . . . , n − 1.</tex> | ||
+ | |||
+ | '''в формулах следует писать не *, а \cdot''' | ||
Заметим, что: | Заметим, что: | ||
− | <tex> \quad \quad \{\xi_1 = n\} ⊂ \{\xi_2 = n\} ⊂ · · · ⊂ \{\xi_t = n\} ⊂ . . . </tex> | + | <tex> \quad \quad \{\xi_1 = n\} ⊂ \{\xi_2 = n\} ⊂ · · · ⊂ \{\xi_t = n\} ⊂ . . . </tex> '''Это события? Не очень понятно, что ты имеешь ввиду''' |
Положим <tex>A =\cup_{t=1}^∞\{\xi_t = n\}</tex>. Тогда | Положим <tex>A =\cup_{t=1}^∞\{\xi_t = n\}</tex>. Тогда | ||
Строка 116: | Строка 120: | ||
Отсюда и из (2.3) находим | Отсюда и из (2.3) находим | ||
− | *<tex>\quad p_{kn} = (1 − q/p)^k/(1 − (q/p)^n).</tex> | + | *<tex>\quad p_{kn} = (1 − q/p)^k/(1 − (q/p)^n).</tex> '''Оформи дроби через \frac''' |
Вероятности выигрыша первым игроком <tex>p_{k0}</tex> тоже удовлетворяют уравнению (2.2). Но граничными | Вероятности выигрыша первым игроком <tex>p_{k0}</tex> тоже удовлетворяют уравнению (2.2). Но граничными | ||
Строка 133: | Строка 137: | ||
В схеме блуждания по целым точкам с поглощением только в нуле вероятность события | В схеме блуждания по целым точкам с поглощением только в нуле вероятность события | ||
− | <tex>\quad A_n = \{\xi_t = 0</tex> в некоторый момент времени <tex>t</tex>, <tex>\xi_t ∈ [0, n)</tex> во все моменты <tex>t\}</tex> | + | <tex>\quad A_n = \{\xi_t = 0</tex> в некоторый момент времени <tex>t</tex>, <tex>\xi_t ∈ [0, n)</tex> во все моменты <tex>t\}</tex> '''Лучше не писать текстом в математических объектах и не использовать математические объекты как сокращения в тексте. тут лучше ввести новую переменную и раскрыть её смысл вне системы''' |
равна | равна | ||
Строка 148: | Строка 152: | ||
== Источники информации == | == Источники информации == | ||
+ | '''Все источники нужно сделать кликабельными''' | ||
* Конспект лекций по теории случайных процессов А.А. Соловьев | * Конспект лекций по теории случайных процессов А.А. Соловьев | ||
* [https://en.wikipedia.org/wiki/Random_walk "Википедия - Random_walk"] | * [https://en.wikipedia.org/wiki/Random_walk "Википедия - Random_walk"] |
Версия 23:35, 26 мая 2020
Содержание
Определение
Определение: |
Случайное блуждание (англ. Random walk) — математическая модель процесса случайных изменений — шагов в дискретные моменты времени. При этом предполагается, что изменение на каждом шаге не зависит от предыдущих и от времени. Соедини в одно предложение, переформулируй В силу простоты анализа эта модель часто используется в разных сферах в математике, экономике, физике, но, как правило, такая модель является существенным упрощением реального процесса. |
Случайные блуждания по прямой
Представим частицу, которая движется по целым точкам на прямой. Перемещение из одной точки в другую происходит через равные промежутки времени. За один шаг частица из точки k с положительной вероятностью p перемещается в точку
и с положительной вероятностью перемещается в точку k − 1. Тех Физической системе соответствует цепь Маркова: лучше сделать тут кликабельнымЗаметим, что вернуться в какую-либо точку можно только за четное число шагов.
Вероятность смещения на d единиц вправо (влево)
Выведем распределение случайной величины
. Кажется, это предложение можно выкинуть и ничего не изменится Будем считать, что . Это отвечает тому, переформулируй, пожалуйста, не очень корректный оборот что в начальный момент времени частица достоверно лишнее слово находилась в точке (здесь — фиксированное число) и затем начала случайно блуждать в соответствии с описанными выше правилами. Пусть — смещение частицы за шагов. Найдём для каждого .Справедливо очевидное лишнее слово равенство:
- , если
Представление через условную вероятность удобно, если нам необходимо явно указать, где находилась частица в начальный момент времени.
Наша физическая модель с математической точки зрения в точности отвечает схеме независимых испытаний Бернулли лучше сделать ссылку на конспекты, если в них это есть, или хотя бы на Википедию с двумя исходами —- прыжком вправо, который мы будем называть успехом, и прыжком лишнее определение, можно писать "перемещение" или "движение" вправо (неудачей). В рамках этой математической модели все вероятности рассчитываются на основании распределения Бернулли. Лишнее предложение Пусть частица сделала
прыжков. Вероятность того, что среди этих прыжков будет ровно прыжков вправо (или, что то же самое, прыжков влево) задаётся формулой:- (1) Это сумма? Если да, так и напиши
Смещение частицы и число прыжков влево и вправо связаны простейшим лишнее слово уравнением
- (2) (1) и (2) разным шрифтом. И такие собственные сноски тоже лучше делать кликабельными. Можно вынести их в отдельные разделы статьи
откуда
. Понятно, что, поскольку частица сделала ровно n прыжков, Тех число прыжков вправо должно быть целым числом в интервале , другими словами, если . Если же указанное ограничение выполнено, то в рамках нашей модели блужданий мы можем воспользоваться распределением Бернулли (1): вот тут хочется кликнуть на (1)- , при обязательном условии (3)
Замечание. Ограничение
по формуле (2) влечёт . Это можно понять и без расчётов: если , то частица «не успевает» в научных текстах не должно быть ненаучных выражений в кавычках дойти из начальной в конечную точку за шагов, даже двигаясь строго в одном направлении (налево при и направо при ). Ограничение на значения согласовано и с (3): биномиальный коэффициент не определён при . Мы можем даже считать формулу (3) верной при любом , если положим по определению для . Число шагов и смещение должны иметь как целые числа одну чётность. Вероятность (3) не зависит от начального положения и определяется только числом шагов (номером члена последовательности) и смещением . При своём движении частица случайным образом «выбирает» то же самое одну из возможных траекторий. Для перехода из точки в точку за шагов возможными являются все те и только те траектории длины , в которых ровно смещений вправо и смещений влево, где . Равенство (1) при этом можно интерпретировать так: вероятность того, что частица пройдет по одной из возможных траекторий, равна , и всего существуют таких траекторий, таким образом,Хотелось бы чуть структурировать, выглядит, как стена текста. Оформить замечание в специальную сноску или в отдельный блок, выделить главное. Сейчас замечание выглядит важнее, чем факт, к которому оно приложено, а это не должно быть так
Задача о разорении игрока
Обсудим блуждание на примере задачи о разорении. Лишнее предложение Пусть начальный капитал
первого игрока составляет рублей, а капитал второго игрока поставь теховское тире – рублей. Первый игрок выигрывает или проигрывает рубль с вероятностями и соответственно. Игра продолжается до тех пор, пока капитал первого игрока не уменьшится до нуля, либо не возрастет до . Поглощение точки в правом конце отрезка соответствует выигрышу первого игрока.Рассмотрим конечную цепь Маркова:
и
(2.1)
Вероятность выигрыша для первого игрока в момент времени
естьПо формуле полной вероятности:
или
в формулах следует писать не *, а \cdot
Заметим, что:
Это события? Не очень понятно, что ты имеешь ввиду
Положим
. Тогда
Переходя к пределу в (2.1) при
, получим
Так как
вероятность выигрыша для первого игрока, то . Рассматриваемая как функция от , вероятность является решением уравнения в конечных разностях- (2.2)
удовлетворяющим граничным условиям
. Теория решения таких уравнений аналогична теории линейных уравнений с постоянными коэффициентами.Пусть сначала
. Решение будем искать в виде , где является корнем характеристического уравнения . Корнями такого уравнения являются .Значит, функции
и удовлетворяют уравнению (2.2). Линейная комбинация- (2.3)
при любых
и также является решением. Подставляя граничные условия в (2.3), при и получим
Отсюда и из (2.3) находим
- Оформи дроби через \frac
Вероятности выигрыша первым игроком
тоже удовлетворяют уравнению (2.2). Но граничными условиями станут Определяя из этих условий и , получим
Так как
, то с вероятностью один из игроков выиграет.Пусть теперь
. В этом случае и решение уравнения (2.2) нужно искать в видеС помощью граничных условий находим
В схеме блуждания по целым точкам с поглощением только в нуле вероятность события
в некоторый момент времени , во все моменты Лучше не писать текстом в математических объектах и не использовать математические объекты как сокращения в тексте. тут лучше ввести новую переменную и раскрыть её смысл вне системы равна
События
вложены последовательно друг в другапоэтому вероятность поглощения в нуле равна
Источники информации
Все источники нужно сделать кликабельными
- Конспект лекций по теории случайных процессов А.А. Соловьев
- "Википедия - Random_walk"
- "Лекция MIT Random Walks"
- Конспект лекций по теории случайных процессов А.А. Соловьев
- Физический факультет МГУ им. М.В. Ломоносова "Случайные блуждания"
- "Задача о разорении игрока"