Изменения
→Вероятность смещения на d единиц вправо (влево)
влево) задаётся формулой:
*<tex>P = {C_{n}^k} p^k q^{n−k}, \quad k = 0, 1, . . . , n</tex> <tex>(1)</tex>
Смещение частицы и число прыжков влево и вправо связаны уравнением
*<tex>d = 1 · k + (−1) · (n − k) = 2k − n \quad</tex> <tex>(2) </tex> '''(1) и (2) разным шрифтом. И такие Такие собственные сноски тоже лучше делать кликабельными. Можно вынести их в отдельные разделы статьи'''
откуда <tex>k = \frac{(n + d)}{2}</tex>. Понятно, что, поскольку частица сделала ровно <tex>n</tex> прыжков,
число прыжков вправо должно быть целым числом в интервале <tex>[0, n]</tex>, другими словами, <tex>P(\xi_n = m + d) = 0,</tex> если <tex>k = \frac{(n + d)}{2}, k \notin \{0, 1, . . . , n\}</tex>. Если же указанное
ограничение выполнено, то в рамках нашей модели блужданий мы можем воспользоваться распределением Бернулли <tex>(1)</tex>: '''вот тут хочется кликнуть на (1)'''
*<tex> P(\xi_n = m + d) = {C_{n}^k} p^k q^{n−k}, \quad k = \frac{(n + d)}{2} </tex>, при обязательном условии <tex>k ∈ {0, 1, . . . , n}.</tex>
'''Замечания'''.
<tex>1)</tex> Ограничение <tex>0 \leq k \leq n </tex> по формуле <tex>(2) </tex> влечёт <tex>|d| \leq n</tex>. Это можно понять и без расчётов: если <tex>|d| > n</tex>, то частица не успевает дойти из начальной в конечную точку за <tex>n</tex> шагов.
<tex>2)</tex> При своём движении частица случайным образом выбирает одну из возможных траекторий. Для перехода из точки
<tex>m</tex> в точку <tex>m</tex> за <tex>n</tex> шагов возможными являются все те и только те траектории длины
<tex>n</tex>, в которых ровно <tex>k</tex> смещений вправо и <tex>n − k</tex> смещений влево, где <tex>k = \frac{(n +
d)}{2}</tex>. Равенство <tex>(1) </tex> при этом можно интерпретировать так: вероятность того, что частица пройдет по одной из
возможных траекторий, равна <tex>p^k q^{n−k}</tex>, и всего существуют <tex>{C_{n}^k}</tex> таких траекторий, таким
образом,