Подсчет деревьев — различия между версиями
Cuciev (обсуждение | вклад) (Sta tement added) |
Cuciev (обсуждение | вклад) м (Unmarked bin trees cosmetics) |
||
| Строка 5: | Строка 5: | ||
= Бинарные деревья = | = Бинарные деревья = | ||
{{Утверждение | {{Утверждение | ||
| − | |statement=Число непомеченных бинарных деревьев: <tex> | + | |id=unmarked_bin |
| + | |statement=Число непомеченных бинарных деревьев: <tex>T_n = C_{n}</tex> (<tex dpi="150">n</tex>-ое [[Числа Каталана|число Каталана]]). | ||
|proof= | |proof= | ||
Устройство бинарного дерева в терминах комбинаторных классов выражается следующим образом <tex>T = \varepsilon + z\times T\times T</tex>.<br> | Устройство бинарного дерева в терминах комбинаторных классов выражается следующим образом <tex>T = \varepsilon + z\times T\times T</tex>.<br> | ||
Версия 02:01, 9 июня 2020
Описание всех используемых далее комбинаторных объектов можно найти в статье "конструирование комбинаторных объектов и их подсчёт".
Содержание
Непомеченные деревья
Бинарные деревья
| Утверждение: |
Число непомеченных бинарных деревьев: (-ое число Каталана). |
|
Устройство бинарного дерева в терминах комбинаторных классов выражается следующим образом .
|
| Утверждение: |
Производящая функция числа непомеченных полных бинарных деревьев: . |
|
Устройство бинарного дерева в терминах комбинаторных классов выражается следующим образом . |
Подвешенные непомеченные деревьея с порядком на детях
Пусть — количество таких деревьев с вершинами. — множество всех последовательностей из данных деревьев. — количество последовательностей с суммарным количество вершин . Чтобы получить дерево из вершин, достаточно взять вершину, и подвесить к ней последовательность деревьев с суммарным количеством вершин . Тогда:
- .
- , где — -ое число Каталана.
Подвешенные непомеченные деревья без порядка на детях
Пусть — количество таких деревьев с вершинами. — множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. — количество лесов с суммарным количество вершин . — количество таких лесов из вершин, что деревья в них содержат не более чем вершин. Чтобы получить дерево из вершин, достаточно взять вершину и подвесить к ней лес деревьев с суммарным количеством вершин . Тогда:
- .
- .
- .
Количество таких деревьев с вершинами образуют последовательность A000081[1].
Помеченные деревья
| Утверждение: |
Число помеченных бинарных деревьев с вершинами равно . |
|
Как и в случае, с непомеченными бинарными деревьями, получаем производящую функцию для помеченных бинарных деревьев: . |
| Теорема (Кэли): |
Число помеченных деревьев с вершинами равно . |
| Доказательство: |
|
Можно доказать формулу двумя способами. Первый способ. Так как между помеченными деревьями порядка и последовательностями длины из чисел от до существует биекция (Код Прюфера), то количество помеченных деревьев совпадает с количеством последовательностей длины из чисел от до . Второй способ. С помощью матрицы Кирхгофа для полного графа на вершинах. Число помеченных деревьев порядка , очевидно, равно числу остовов в полном графе , которое есть по следствию теоремы Кирхгофа. |
| Утверждение: |
Число помеченных корневых деревьев с вершинами есть . |
|
Данное утверждение является следствием теоремы Кэли. |
Дополнительно
| Теорема (Скойнс): |
Число 2-раскрашенных деревьев с вершинами одного цвета и вершинами другого равно . |
См.также
- Лемма Бёрнсайда и Теорема Пойа
- Числа Каталана
- Генерация комбинаторных объектов в лексикографическом порядке