Обсуждение:Метод производящих функций — различия между версиями
Zevgeniy (обсуждение | вклад) (UI) |
Zevgeniy (обсуждение | вклад) м (UI) |
||
Строка 192: | Строка 192: | ||
<tex dpi="130">w(\circ)=0</tex> | <tex dpi="130">w(\circ)=0</tex> | ||
− | + | Далее под производящей функцией будет подразумеваться экспоненциальная производящая функция. | |
{{Определение | {{Определение | ||
Строка 200: | Строка 200: | ||
<tex dpi="130">Z=\left \{ ① \right \}</tex> | <tex dpi="130">Z=\left \{ ① \right \}</tex> | ||
}} | }} | ||
− | |||
− | |||
− | |||
Производящая функция последовательности: <tex dpi="130">Z(t)=t</tex>. | Производящая функция последовательности: <tex dpi="130">Z(t)=t</tex>. | ||
Строка 212: | Строка 209: | ||
<tex dpi="130">\varepsilon=\left \{ \circ \right \}</tex>. | <tex dpi="130">\varepsilon=\left \{ \circ \right \}</tex>. | ||
}} | }} | ||
− | |||
− | |||
− | |||
Производящая функция последовательности: <tex dpi="130">\varepsilon(t)=1</tex>. | Производящая функция последовательности: <tex dpi="130">\varepsilon(t)=1</tex>. |
Версия 12:47, 24 июня 2020
Содержание
Непомеченные комбинаторные объекты
Каждый комбинаторный объект состоит из атомов.
У атомов определен вес
.
Определение: |
Считающей последовательностью называется последовательность | , где — количество объектов веса .
Производящую функцию класса обозначим .
Определение: |
Комбинаторным объектом | называется комбинаторный объект, состоящий из одного атома веса .
Считающая последовательность: .
Производящая функция последовательности: .
Определение: |
Комбинаторным объектом | называется комбинаторный объект, состоящий из одного атома веса . .
Считающая последовательность: .
Производящая функция последовательности: .
Определение: |
Комбинаторным классом | называется множество комбинаторных объектов, обладающих каким-то свойством.
Объединение комбинаторных классов
Определение: |
Объединением комбинаторных классов | и называется комбинаторный класс .
При объединении комбинаторных классов одинаковые объекты разных классов считаются разными. Это делается так, чтобы не рассматривать внутреннюю структуру классов, а работать только со считающими последовательностями и производящими функциями.
Пары комбинаторных классов (декартово произведение комбинаторных классов)
Определение: |
Парой комбинаторных классов | и называется комбинаторный класс .
Утверждение: |
Верно, потому что коэффициенты производящей функции описываются описываются равенством выше) |
Последовательности комбинаторных классов
Определение: |
Последовательностью | объектов из называется .
Утверждение: |
Докажем по индукции: База .
Переход.
|
Определение: |
Последовательностью (всех возможных длин) объектов из | называется .
Утверждение: |
(Геометрическая прогрессия) |
Ограничение: . Этому есть как техническое, так и комбинаторное объяснение.
- Технически, если , то мы будем делить на отрицательное число; если , то на функцию, у которой свободный член , — что формализм производящих функций сделать не позволяет.
- Комбинаторное объяснение заключается в том, что если объектов веса ноль более 0, то мы можем создать бесконечное количество последовательностей веса 0 (комбинируя такие объекты), а мы хотим работать с конечными количествами последовательностей.
Примеры:
- Последовательночти из не менее 3 объектов:
- Последовательности чётной длины:
Комбинаторный объект "Натуральные числа"
Вес числа равен его значению. Каждое натуральное число встречается 1 раз.
Считающая последовательность:
— упорядоченное разбиение на слагаемые.
Множества
Множества
— последовательности без повторений и порядка элементов.Пример:
Мультимножества
Мультимножества
— последовательности с повторениями, но без порядка элементов.Как и с
существует ограничение на : .
Помеченные объекты
Обычная | , где — считающая последовательность |
Экспоненциальная |
Помеченные комбинаторные объекты отличаются тем, что все атомы имеет разные значки, а именно — если вес объекта , то все атомы пронумерованы различными целыми числами от до .
Далее под производящей функцией будет подразумеваться экспоненциальная производящая функция.
Определение: |
Комбинаторным объектом | называется комбинаторный объект, состоящий из одного атома веса .
Производящая функция последовательности: .
Определение: |
Комбинаторным объектом | называется комбинаторный объект, состоящий из одного атома веса . .
Производящая функция последовательности: .