Основные определения теории графов — различия между версиями
(→Путь) |
(точка) |
||
Строка 22: | Строка 22: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Степенью вершины <tex>v_i</tex> называется число рёбер инцидентных <tex>v_i</tex>, и обозначается <tex>deg \; v_i</tex> | + | Степенью вершины <tex>v_i</tex> называется число рёбер инцидентных <tex>v_i</tex>, и обозначается <tex>deg \; v_i</tex>. |
}} | }} | ||
Говорят, что ребро <tex> e = (u, v) </tex> инцидентно вершине <tex>a</tex>, если <tex>u = a</tex> или <tex>v = a</tex>. | Говорят, что ребро <tex> e = (u, v) </tex> инцидентно вершине <tex>a</tex>, если <tex>u = a</tex> или <tex>v = a</tex>. |
Версия 02:03, 22 января 2011
Содержание
Граф
Определение: |
Графом | называется пара , где - конечное множество вершин, а - множество рёбер.
В неориентированном графе
.Ребро
Для неориентированного графа
Определение: |
Ребром называют неупорядоченную пару вершин | .
Для ориентированного графа
Определение: |
Ребром называют упорядоченную пару вершин | .
Степень вершины
Для неориентированного графа
Определение: |
Степенью вершины | называется число рёбер инцидентных , и обозначается .
Говорят, что ребро
инцидентно вершине , если или .Для ориентированного графа
Определение: |
Полустепенью входа вершины | называется число рёбер, входящих в эту вершину, и обозначается .
Определение: |
Полустепенью выхода вершины | называется число рёбер, выходящих из этой вершину, и обозначается .
Петля
Определение: |
Петлёй в ориентированном графе называется ребро, концы которого совпадают, то есть | .
По умолчанию петли в неориентированном графе запрещены.
Путь
Определение: |
Путём в графе называется последовательность вида | , где .
Циклический путь
Для ориентированного графа
Определение: |
Циклическим путём называется путь, в котором | .
Для неориентированного графа
Определение: |
Циклическим путём называется путь, в котором | , а так же .
Цикл
Определение: |
Цикл - это класс эквивалентности циклических путей на отношении эквивалентности таком, что два пути эквивалентны, если | ; где и - это две последовательности ребер в циклическом пути.