Обсуждение:Доказательство нерегулярности языков: лемма о разрастании — различия между версиями
(→Упрощение доказательства нерегулярности примера) |
(→Упрощение доказательства нерегулярности примера) |
||
Строка 1: | Строка 1: | ||
== Упрощение доказательства нерегулярности примера == | == Упрощение доказательства нерегулярности примера == | ||
− | Предположим, что язык - регулярный, а значит для него существует ДКА (пусть в нём $n$ состояний). Подадим на него $n+1$ слово вида $ab^i$ где $i$ принадлежит от $1$ до $n + 1$. Согласно принципу Дирихле, хотя бы 2 слова должны попасть в одно и то же состояние; пусть это слова $ab^k$, $ab^l$, тогда если подать на автомат слова $ab^kc^k$ и $ab^lc^k$, они также попадут в одно состояние. Заметим, что $ab^kc^k$ принадлежит языку и | + | Предположим, что язык - регулярный, а ,значит, для него существует ДКА (пусть в нём $n$ состояний). Подадим на него $n+1$ слово вида $ab^i$, где $i$ принадлежит от $1$ до $n + 1$. Согласно принципу Дирихле, хотя бы 2 слова должны попасть в одно и то же состояние; пусть это слова $ab^k$, $ab^l$, тогда если подать на автомат слова $ab^kc^k$ и $ab^lc^k$, они также попадут в одно состояние. Заметим, что $ab^kc^k$ принадлежит языку, а $ab^lc^k$ {{---}} не принадлежит. Получается противоречие, ведь оба слова перейдут в одно и то же состояние, но так как $ab^kc^k$ переходит в терминальное состояние, то и $ab^lc^k$ тоже переходит в него, чего быть не может, а ,значит, наш язык не регулярный. |
Версия 21:06, 1 июля 2020
Упрощение доказательства нерегулярности примера
Предположим, что язык - регулярный, а ,значит, для него существует ДКА (пусть в нём $n$ состояний). Подадим на него $n+1$ слово вида $ab^i$, где $i$ принадлежит от $1$ до $n + 1$. Согласно принципу Дирихле, хотя бы 2 слова должны попасть в одно и то же состояние; пусть это слова $ab^k$, $ab^l$, тогда если подать на автомат слова $ab^kc^k$ и $ab^lc^k$, они также попадут в одно состояние. Заметим, что $ab^kc^k$ принадлежит языку, а $ab^lc^k$ — не принадлежит. Получается противоречие, ведь оба слова перейдут в одно и то же состояние, но так как $ab^kc^k$ переходит в терминальное состояние, то и $ab^lc^k$ тоже переходит в него, чего быть не может, а ,значит, наш язык не регулярный.