Изменения
Нет описания правки
{{Определение
|definition = '''Случайное блуждание''' (англ. ''Random walk'') {{---}} математическая модель процесса случайных изменений — шагов в дискретные моменты времени. При этом , предполагается, что изменение на каждом шаге не зависит от предыдущих и от времени. В силу простоты анализа эта модель часто используется в разных сферах в математике, экономике, физике, но, как правило, такая модель является существенным упрощением реального процесса.
}}
Представим частицу, которая движется по целым точкам на прямой. Перемещение из одной точки
в другую происходит через равные промежутки времени. За один шаг частица из точки k с положительной вероятностью p перемещается в точку <tex>k + 1</tex> и с положительной вероятностью <tex>q = 1 − p</tex>
перемещается в точку <tex>k − 1</tex>. Физической системе соответствует [https://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B0%D1%8F_%D1%86%D0%B5%D0%BF%D1%8C цепь Маркова]:
*<tex>\xi_n = \xi_{n-1} + \eta_n = \xi_0 + S_n, \eta_n = \begin{cases} 1 &\text{с вероятностью p}\\-1 &\text{с вероятностью 1 - p}
Заметим, что вернуться в какую-либо точку можно только за четное число шагов.
==Вероятность смещения на d единиц вправо или (влево)==
Найдём <tex>P(\xi_n = m + d)</tex> для каждого <tex>d ∈ Z</tex>.
'''Замечания'''. <tex>1)</tex> Ограничение <tex>0 \leq k \leq n </tex> по формуле <tex>d = 1 · k + (−1) · (n − k) = 2k − n</tex> влечёт <tex>|d| \leq n</tex>. Это можно понять и без расчётов: если <tex>|d| > n</tex>, то частица не успевает дойти из начальной в конечную точку за <tex>n</tex> шагов. <tex>2)</tex> При своём движении частица случайным образом выбирает одну из возможных траекторий. Для перехода из точки <tex>m</tex> в точку <tex>m</tex> за <tex>n</tex> шагов возможными являются все те и только те траектории длины <tex>n</tex>, в которых ровно <tex>k</tex> смещений вправо и <tex>n − k</tex> смещений влево, где <tex>k = \frac{(n + d)}{2}</tex>. Равенство <tex>P = {C_{Теоремаn}^k} p^k q^{n−k}</tex> при этом можно интерпретировать так: вероятность того, что частица пройдет по одной из возможных траекторий, равна <tex>p^k q^{n−k}</tex>, и всего существуют <tex>{C_{n}^k}</tex> таких траекторий, таким образом, *<tex>P = p^k \cdot q^{n−k}+...+p^k \cdot q^{n−k}={C_{n}^k} p^k q^{n−k}.</tex> == Случайные блуждания по прямой == Представим частицу, которая движется по целым точкам на прямой. Перемещение из одной точкив другую происходит через равные промежутки времени. За один шаг частица из точки k с положительной вероятностью p перемещается в точку <tex>k + 1</tex> и с положительной вероятностью <tex>q = 1 − p</tex>|statementперемещается в точку <tex>k − 1</tex>.Физической системе соответствует [https://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B0%D1%8F_%D1%86%D0%B5%D0%BF%D1%8C цепь Маркова]: *<tex>\xi_n = \xi_{n-1} + \eta_n = \xi_0 + S_n, \eta_n = \begin{cases} 1 &\text{с вероятностью p}\\-1 &\text{с вероятностью 1 - p} \end{cases}</tex dpi> Заметим, что вернуться в какую-либо точку можно только за четное число шагов. ="140"= Задача о разорении игрока ==Пусть начальный капитал <tex>H\xi_0</tex> первогоигрока составляет <tex>k</tex> рублей, а капитал второго игрока <tex> – (p_1n − k)</tex> рублей. Первый игрок выигрываетили проигрывает рубль с вероятностями <tex>p</tex> и <tex>q</tex> соответственно. Игра продолжается до тех пор, покакапитал первого игрока не уменьшится до нуля, p_2либо не возрастет до <tex>n</tex>. Поглощение точки в правомконце отрезка <tex>[0, n]</tex> соответствует выигрышу первого игрока. Рассмотрим конечную цепь Маркова: <tex>\quad\dotsxi_{t+1} = \xi_t + \eta_t, p_n\quad P\{\eta_t = 1|\xi_t ≠ 0 ∨ \xi_t ≠ n\} = p,\quad P\{\eta_t = −1|\xi_t ≠ 0 ∨ \xi_t ≠ n\} = q</tex> и <tex>\quad P\{\eta = 0|\xi_t = 0 ∨ \xi_t = n\} = 1. </tex> <tex>(2.1) </tex> Вероятность выигрыша для первого игрока в момент времени <tex>t</tex> есть <tex>p_{kn}(t) = P\{\eta_t = n|\eta_0 = k\}</tex> По формуле полной вероятности: *<tex> \quad P\{\xi_{t+1} = n\} = P\{\xi_1 = k + 1|\xi_0 = k\}P\{\xi_{t+1} = n|\xi_{1} = k + 1\} + P\{\xi_{1} = k − 1|\xi_0 = k\}P\{\xi_{t+1} = n|\xi_{1} = k -1\} </tex> или *<tex> \quad p_{kn}(t + 1) = p \cdot p_{k +1,n}(t) + q \sumcdot p_{k−1,n}(t), \quad k = 1, 2, . . . , n − 1.</tex> Теорему о предельных вероятностях применить не можем, но заметим, что: <tex> \quad \quad \limits_{i\xi_1 = n\} ⊂ \{\xi_2 = n\} ⊂ · · · ⊂ \{\xi_t = n\} ⊂ . . . </tex> Положим <tex>A =\cup_{t=1}^∞\{\xi_t = n\}</tex>. Тогда <tex> \quad \quad p_{kn} = P(A) = \lim_{t\to\infty} p_iP\{\xi_t = n|\log_2p_i xi_0 = k \sum} = \lim_{t\to\infty}p_{kn}(t).</tex> Переходя к пределу в <tex>(2.1)</tex> при <tex>t → ∞</tex>, получим <tex>\quad \limits_quad p_{ikn} =p \cdot p_{k+1,n}^+ q \cdot p_{k−1,n} p_i</tex> Так как <tex>p_{kn}</tex> вероятность выигрыша для первого игрока, то <tex>p_{0n} = 0, p_{nn} = 1</tex>. Рассматриваемая как функция от <tex>k</tex>, вероятность <tex>p_{kn}</tex> является решением уравнения в конечных разностях *<tex> \log_2quad \dfracquad p \cdot f_{k+1}− f_{p_ik}+ q \cdot f_{k−1} = 0 </tex> <tex>(2.2)</tex>|proof удовлетворяющим граничным условиям <tex>f_0 = 0 \quad f_n = 1</tex>. Теория решения таких уравнений аналогичнатеории линейных уравнений с постоянными коэффициентами. Пусть сначала <tex>p ≠ q</tex>. Решение будем искать в виде <tex>f_k = \lambda^k</tex>, где <tex>\lambda</tex> является корнем характеристического уравнения <tex>p\lambda^2 − \lambda + q = 0</tex>. Корнями такого уравнения являются <tex>\lambda_1 = 1, \lambda_2 =\frac{q}{p}</tex>. Значит, функции <tex>\lambda_1^k</tex> и <tex>\lambda_2^k</tex> удовлетворяют уравнению <tex>(2.2)</tex>. Линейная комбинация
*<tex>\quad f_k = C_1λ^k_1 + C_2λ^k_2</tex>
<tex dpi="140"> f(x)=\log_2x </tex> {quad p_{---kn}} выпуклая вверх функция, <tex> p_1,p_2,\ldots,p_n>0</tex> и <tex> \sum \limits_{i=1}^{n} p_i = 1 </tex>, тогда для нее выполняется неравенство Йенсена:<tex dpi="140"> \sum\limits_{i=1}^{n} p_i f(\dfrac{1}{p_i}) \leqslant f(\sum\limits_frac{i=1k}^{n} (p_i \cdot\dfrac{1}{p_i})) </tex>Таким образом получаем, что <tex> H(p_1, p_2, \dots, p_n) \leqslant \log_2n </tex>}}Тогда из теоремы и доказанной выше леммы следует, что для n исходов энтропия максимальна, если они все равновероятны.== Условная и взаимная энтропия =={{Определение|definition = '''Условная энтропия''' (англ. ''conditional entropy'') {quad p_{---}k0} определяет количество остающейся энтропии (то есть, остающейся неопределенности) события <tex>A</tex> после того, как становится известным результат события <tex>B</tex>. Она называется ''энтропия <tex>A</tex> при условии <tex>B</tex>'', и обозначается <tex>H(A|B)</tex>}} <tex>H(A|B)= - \sum\limits_{i=1}^{m}p(b_i)− \sum\limits_frac{j=1k}^{n} p(a_j|b_i)\log_2p(a_j|b_i) </tex>{{Определение|definition = '''Взаимная энтропия''' (англ. ''joint entropy'') {{---}} энтропия объединения двух событий <tex>A</tex> и <tex>B</tex>. }}<tex> H(A \cap B) = -\sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2p(a_j \cap b_i) </tex>{{Утверждение|statement= <tex> H(A \cap B) = H(A|B)+H(B)=H(B|A)+H(A) </tex>|proof= По формуле условной вероятности <tex dpi="130"> p(a_j|b_i)=\dfrac{p(a_j \cap b_i)}{p(b_i)} </tex>
<tex dpi="140"> = H(A \cap B) +\sum\limits_{iquad A_n =1}^{m} \log_2p(b_i)\sum\limits_{j=1}^{n} p(a_j \cap b_i) = H(A exists t : \cap B) +quad \sum\limits_{i=1}^{m} \log_2p(b_i)p(b_i) xi_t = 0 </tex>, <tex dpi="140">H(A \cap B) - H(Bquad \forall t: \quad \xi_t ∈ [0, n) \}</tex>равна
*<tex>p_k =\lim_{n\to\infty}P(A) = См. также =\lim_{n\to\infty}p_{k0}=*[[Вероятностное пространство\begin{cases} (\frac{q}{p})^k, элементарный исход &\text{если q меньше p}\\1, событие|Вероятностное пространство, элементарный исход, событие]]&\text{если q≥p}*[[Условная вероятность|Условная вероятность]] \end{cases}</tex>
== Источники информации ==
* [https://en.wikipedia.org/wiki/Random_walk "Википедия - Random_walk"]
* [https://www.youtube.com/watch?v=6wUD_gp5WeE "Лекция MIT Random Walks"]
* [http://math.csu.ru/new_files/students/lectures/teor_slych_proc/solovev_teor_slych_proc.pdf Конспект лекций по теории случайных процессов А.А. Соловьев]
* [https://cmp.phys.msu.ru/sites/default/files/02_RandomWalks.pdf Случайные блуждания по прямой]
*[https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_%D0%BE_%D1%80%D0%B0%D0%B7%D0%BE%D1%80%D0%B5%D0%BD%D0%B8%D0%B8_%D0%B8%D0%B3%D1%80%D0%BE%D0%BA%D0%B0 "Задача о разорении игрока"]
[[Категория:Дискретная математика и алгоритмы]]
[[Категория: Теория вероятности ]]