Связь матрицы Кирхгофа и матрицы инцидентности — различия между версиями
DrozdovVA (обсуждение | вклад) м |
Kirelagin (обсуждение | вклад) м (Матрица, транспонированная данной…) |
||
Строка 10: | Строка 10: | ||
|proof= | |proof= | ||
− | При умножении i-й строки исходной матрицы <tex>I</tex> на j-й столбец | + | При умножении <tex>i</tex>-й строки исходной матрицы <tex>I</tex> на <tex>j</tex>-й столбец транспонированной матрицы <tex>I^T </tex> перемножаются i-я и j-я строки исходной матрицы. При умножении <tex>i</tex>-й строки на саму себя на диагонали полученной матрицы получится сумма квадратов элементов <tex>i</tex>-й строки, которая равна, очевидно, <tex>deg(v_i)</tex>. Пусть теперь <tex>i \ne j</tex>. Если <tex> (v_i, v_j) \in E </tex>, то существует ровно одно ребро, соединяющее <tex> v_i </tex> и <tex> v_j </tex>, следовательно результат перемножения <tex>i</tex>-й и <tex>j</tex>-й строк равен -1, в противном случае он равен 0 в силу отсутствия ребра, инцидентного обеим вершинам. Определенная данными условиями матрица и является матрицей Кирхгофа. |
}} | }} | ||
Версия 23:58, 22 января 2011
Определение: |
Пусть орграф на том же самом множестве вершин будем называть ориентацией графа . | - произвольный граф. Превратим каждое его ребро в дугу, придав ребру одно из двух возможных направлений. Полученный
Лемма: |
Пусть - матрица Кирхгофа графа , - матрица инцидентности с некоторой ориентацией. Тогда
|
Доказательство: |
При умножении | -й строки исходной матрицы на -й столбец транспонированной матрицы перемножаются i-я и j-я строки исходной матрицы. При умножении -й строки на саму себя на диагонали полученной матрицы получится сумма квадратов элементов -й строки, которая равна, очевидно, . Пусть теперь . Если , то существует ровно одно ребро, соединяющее и , следовательно результат перемножения -й и -й строк равен -1, в противном случае он равен 0 в силу отсутствия ребра, инцидентного обеим вершинам. Определенная данными условиями матрица и является матрицей Кирхгофа.
См. также
Подсчет числа остовных деревьев с помощью матрицы Кирхгофа
Источники
Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы — Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001, 288 стр.