Граф блоков-точек сочленения — различия между версиями
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Пусть [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|граф]] <tex>G</tex> | + | Пусть [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|граф]] <tex>G</tex> связен. Обозначим <tex>A_1...A_n</tex> - блоки, а <tex>a_1...a_m</tex> - [[Точка сочленения, эквивалентные определения|точки сочленения]] <tex>G</tex>. |
Построим двудольный граф <tex>T</tex>, поместив <tex>A_1...A_n</tex> и <tex>a_1...a_m</tex> в различные его доли. Если точка сочленения принадлежит блоку, проведем между ними ребро. Полученный граф <tex>T</tex> называют '''графом блоков-точек сочленения''' графа <tex>G</tex>. | Построим двудольный граф <tex>T</tex>, поместив <tex>A_1...A_n</tex> и <tex>a_1...a_m</tex> в различные его доли. Если точка сочленения принадлежит блоку, проведем между ними ребро. Полученный граф <tex>T</tex> называют '''графом блоков-точек сочленения''' графа <tex>G</tex>. | ||
}} | }} |
Версия 12:26, 23 января 2011
Определение: |
Пусть граф связен. Обозначим - блоки, а - точки сочленения . Построим двудольный граф , поместив и в различные его доли. Если точка сочленения принадлежит блоку, проведем между ними ребро. Полученный граф называют графом блоков-точек сочленения графа . |
Лемма: |
В определениях, приведенных выше, - дерево. |
Доказательство: |
Достаточно показать, что в Пусть аналогично нет циклов. Пусть - последовательные вершины , лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая и и не содержащая . По ней можно проложить путь в (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине , получив цикл, что противоречит тому, что - точка сочленения. - лежащая на цикле последовательные вершины . В этом случае рассуждение такое же, и и не смогут быть точками сочленения из-за цикла в . |