Мост, эквивалентные определения — различия между версиями
м |
|||
Строка 24: | Строка 24: | ||
|proof = | |proof = | ||
− | <tex>(1) \Rightarrow (2)</tex> Пусть ребро <tex>x</tex> соединяет вершины <tex>a</tex> и <tex>b</tex>. Пусть граф <tex> G - {x} </tex> - связный. Тогда между вершинами <tex>a</tex> и <tex>b</tex> существует еще один путь, т.е. между вершинами <tex>a</tex> и <tex>b</tex> существуют два реберно | + | <tex>(1) \Rightarrow (2)</tex> Пусть ребро <tex>x</tex> соединяет вершины <tex>a</tex> и <tex>b</tex>. Пусть граф <tex> G - {x} </tex> - связный. Тогда между вершинами <tex>a</tex> и <tex>b</tex> существует еще один путь, т.е. между вершинами <tex>a</tex> и <tex>b</tex> существуют два реберно-непересекающихся пути. Но тогда ребро <tex>x</tex> не является мостом графа <tex>G</tex>. Противоречие. |
<tex>(2) \Rightarrow (4)</tex> В условиях определения (4) пусть существует такие вершины <tex>u</tex> и <tex>w</tex>, что между ними существует простой путь <tex>P: x \notin P</tex>. Но тогда граф <tex>G - {x}</tex> - связный. Противоречие. | <tex>(2) \Rightarrow (4)</tex> В условиях определения (4) пусть существует такие вершины <tex>u</tex> и <tex>w</tex>, что между ними существует простой путь <tex>P: x \notin P</tex>. Но тогда граф <tex>G - {x}</tex> - связный. Противоречие. |
Версия 22:50, 23 января 2011
Пусть
- связный граф.Определение: |
(1) Мост графа | - ребро, соединяющее как минимум две компоненты реберной двусвязности .
Определение: |
(2) Мост графа | - ребро, при удалении которого граф становится несвязным.
Определение: |
(3) Ребро | является мостом графа , если в существуют такие вершины и , что любой простой путь между этими вершинами проходит через ребро
Определение: |
(4) Ребро | является мостом графа , если существует разбиение множества вершин на такие множества и , что и ребро принадлежит любому простому пути
Теорема: |
Определения (1), (2), (3) и (4) эквивалентны. |
Доказательство: |
Пусть ребро соединяет вершины и . Пусть граф - связный. Тогда между вершинами и существует еще один путь, т.е. между вершинами и существуют два реберно-непересекающихся пути. Но тогда ребро не является мостом графа . Противоречие. В условиях определения (4) пусть существует такие вершины и , что между ними существует простой путь . Но тогда граф - связный. Противоречие. Возьмем и . Тогда простой путь содержит ребро . Утверждение доказано Тогда между вершинами Пусть . Пусть ребро не является мостом по определению (1). и есть простой путь . Составим такой путь , что . Сделаем путь простым. Получим простой путь , не проходящий по ребру . Противоречие. |
Литература
- Харари Ф. Теория графов.[1] — М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)