Изменения
→Запуск машинного обучения на мобильных телефонах
Навигационные приложения можно значительно улучшить, если интегрировать в них алгоритмы по распознаванию фото и видео. К примеру, если приложение подключается к камере в автомобиле, оно может анализировать ситуацию на дороге и предупреждать водителя в случае возможной опасности. Так можно распознавать пробки, дорожные знаки по ограничению скорости, агрессивное поведение окружающих водителей и другие характеристики дорожного движения.
== Запуск моделей машинного обучения на мобильных телефонах ==
Для запуска [[Глубокое_обучение|глубоких моделей]] необходимо наличием мощных вычислительных ресурсов и большого объема учебных данных. Поэтому построение модели может осуществляться с помощью высокопроизводительных центральных (англ. central processing unit, CPU<ref>[https://en.wikipedia.org/wiki/Central_processing_unit Central processing unit]</ref>) и графических (англ. graphics processing unit, GPU<ref>[https://en.wikipedia.org/wiki/Graphics_processing_unit Graphics processing unit]</ref>) процессоров, а после построения ее можно запустить на мобильном устройстве с гораздо меньшей вычислительной мощностью на CPU, интегральных схем специального назначения (англ. [https://en.wikipedia.org/wiki/Application-specific_integrated_circuit Application specific integrated circuit, ASIC]), программируемых пользователем вентильных матриц(англ. [https://en.wikipedia.org/wiki/Field-programmable_gate_array Field programmable gate array, FPGA]) или мобильных GPU. На рисунках 1-4 представлены модели взаимодействия с соответcтвующими вычислительными устройствами.