Динамика по поддеревьям — различия между версиями
(→Псевдокод) |
|||
Строка 34: | Строка 34: | ||
'''for''' (i : Ch[x]) | '''for''' (i : Ch[x]) | ||
dfs(i, a, b, c, w, Ch) | dfs(i, a, b, c, w, Ch) | ||
− | a[x] = max(a[x], b[i] + w[x][i] - с[i]) | + | a[x] = max(a[x], b[i] + w[x][i] - с[i]) <font color = darkgreen>// по формуле выше, но без b[x] (прибавим его один раз в конце) </font color = darkgreen> |
b[x] += с[i] | b[x] += с[i] | ||
− | a[x] += b[x] | + | a[x] += b[x] <font color = darkgreen>// так как в a[x] пока что хранится только на сколько мы можем увеличить ответ если будем использовать вершину x</font color = darkgreen> |
c[x] = max(a[x], b[x]) | c[x] = max(a[x], b[x]) | ||
Версия 13:44, 31 марта 2021
Главной особенностью динамического программирования по поддеревьям является необходимость учитывать ответы в поддеревьях, так как они могут влиять на ответы в других поддеревьях. Рассмотрим для лучшего понимания динамики по поддеревьям задачу о максимальном взвешенном паросочетании в дереве.
Содержание
Задача о паросочетании максимального веса в дереве
Задача: |
Пусть задано взвешенное дерево, с весами, обозначенными как паросочетание, чтобы суммарный вес всех рёбер, входящих в него, был максимальным. | , где и — вершины дерева, соединённые ребром.. Необходимо составить такое
Для решения данной задачи существует несколько алгоритмов. Например, алгоритм Куна, который имеет верхнюю оценку порядка . Но так как нам дано дерево, то можно использовать динамическое программирование, время работы алгоритма с которым улучшается до .
Обозначим
как паросочетание максимального веса в поддереве с корнем в -той вершине, при этом -тая вершина соединена ребром, входящим в паросочетание, с вершиной, входящей в поддерево -ой вершины; аналогично — как паросочетание максимального веса в поддерева с корнем в -той вершине, но только при этом -тая вершина соединена ребром, входящим в паросочетание, с вершиной, не входящей в поддерево -ой вершины; а , таким образом, ответ на задачу будет находиться в , где — корень дерева. Идея динамического программирования здесь состоит в том, что для того, чтобы найти паросочетание максимального веса с корнем в вершине , нам необходимо найти максимальное паросочетание для всех поддеревьев -ой вершины.Обозначим
— как множество сыновей вершины и будем находить значения и следующим образом:Если вершина
— лист, то ,в противном же случае
- ,
С учётом того, что
, эти формулы можно переписать как- .
Теперь оценим количество операций, необходимых нам для нахождения . Так как , то для вычисления необходимо вычислить , . Для вычисления и того, и другого необходимо время порядка , где — число вершин в дереве.
Псевдокод
// в основной процедуре вызываем dfs от корня(root), после этого ответ будет хранится в c[root] function dfs(x: int, a: int[], b: int[], c: int[], w: int[][], Ch: int[]): for (i : Ch[x]) dfs(i, a, b, c, w, Ch) a[x] = max(a[x], b[i] + w[x][i] - с[i]) // по формуле выше, но без b[x] (прибавим его один раз в конце) b[x] += с[i] a[x] += b[x] // так как в a[x] пока что хранится только на сколько мы можем увеличить ответ если будем использовать вершину x c[x] = max(a[x], b[x])
Задача о сумме длин всех путей в дереве
Задача: |
Найти сумму длин всех путей в дереве. |
Решим эту задачу за
. Пусть задано подвешенное дерево. Рассмотрим количество путей для вершины . Во-первых, это пути не проходящие через эту вершину, то есть все пути между её сыновьями. Во-вторых, пути, которые оканчиваются вершиной . И в третьих, это пути проходящие через вершину , они начинаются из поддерева одного из сыновей этой вершины и заканчиваются в другом поддереве одного из сыновей вершины .Теперь подсчитаем пути для каждого варианта. Обозначим
размер поддерева , сумма длин всех путей вершины , количество путей оканчивающихся вершиной , количество путей проходящих через вершину . Если вершина лист, то = 1, а = 0.- Пути не проходящие через эту вершину. Это просто сумма суммы длин для всех поддеревьев детей или .
- Пути оканчивающиеся в вершине . Рассмотрим ребро, соединяющее вершину и одного ее сына, пусть это будет вершина . Переберем все пути, которые начинаются с этого ребра и идут вниз. Это будет сумма путей оканчивающихся в , так как суммарная длина поддерева уже сосчитана и каждый такой путь мы продлили ребром, соединяющим вершины и . Всего таких путей: .
- Пути проходящие через вершину . Рассмотрим двух сыновей этой вершины: и . Нам надо подсчитать все пути, которые поднимаются из поддерева в и затем опускаются в поддерево и наоборот. То есть по каждому пути, оканчивающимся в вершине мы пройдем столько раз сколько элементов в поддереве , следовательно таких путей будет . Аналогично, если будем подниматься из поддерева . Также надо учитывать сколько раз мы проходим по ребрам, соединяющим вершины и . Итого для двух вершин и : , следовательно ( ) . Но такой подсчет испортит асимптотику до . Заметим, что . Но еще надо учесть, что , следовательно . Аналогично для . Итак: .
Ответ задачи:
. Асимптотика каждого слагаемого равна , где — число вершин в дереве, следовательно и время работы самого алгоритма .Амортизированные оценки для ДП на дереве
Теорема: |
Пусть какой-либо алгоритм на дереве работает за время для вершины x, тогда время обработки им всего дерева не превышает : |
Доказательство: |
, поэтому . |