Opij1Cmax — различия между версиями
Строка 15: | Строка 15: | ||
|- | |- | ||
! | ! | ||
− | !| <tex>\textbf1</tex> || <tex>\textbf2</tex> || <tex>\textbf3</tex> ||<tex>\bf{\ | + | !| <tex>\textbf1</tex> || <tex>\textbf2</tex> || <tex>\textbf3</tex> ||<tex>\bf{\cdots}</tex>|| <tex>\textbf{n - 1}</tex> || <tex>\textbf{n}</tex> |
|- style="text-align:center;" | |- style="text-align:center;" | ||
!<tex>\bf{M_1}</tex> | !<tex>\bf{M_1}</tex> |
Версия 18:47, 11 октября 2021
Задача: |
Дано | одинаковых станков, которые работают параллельно и работ, котороые необходимо выполнить в произвольном порядке на всех станках. Время выполнения каждой работы на любом станке одинаково и равно 1. Необходимо минимизировать время выполнения всех работ.
Алгоритм
Описание алгоритма
Минимальное значение
упирается в следующие ограничения:- В допустимом расписании на каждом станке надо обработать каждую работу, поэтому .
- В допустимом расписании каждую работу нужно обработать на всех станках, причем ее нельзя обрабатывать на двух станках одновременно, поэтому .
Тогда
.В случае
оптимальное расписание строится циклическими сдвигами последовательности и выглядит следующим образом:Если же
, добавим фиктивных работ с номерами , построим расписание способом выше и удалим из полученного расписания фиктивные работы.Оценка сложности алгоритма
Минимальное значение
вычисляется за времени. Построение расписания сводится к заполнению матрицы размером и выполняется за времени.