Обнаружение и исправление ошибок кодирования — различия между версиями
Строка 76: | Строка 76: | ||
Примером кода для случая <tex>k=1</tex> является [[Избыточное кодирование, код Хэмминга#def1|код Хэмминга]]. | Примером кода для случая <tex>k=1</tex> является [[Избыточное кодирование, код Хэмминга#def1|код Хэмминга]]. | ||
+ | |||
+ | == См. также == | ||
+ | * [[Избыточное кодирование, код Хэмминга]] | ||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Представление информации]] | [[Категория: Представление информации]] |
Версия 20:19, 12 ноября 2021
Пусть расстояние Хемминга . Пусть — разделяемый код постоянной длины. Обозначим .
— булевое множество. Рассмотрим иСодержание
Коды, обнаруживающие и исправляющие ошибки
Определение: |
Код | обнаруживает ошибок, если .
Определение: |
Код | исправляет ошибок, если .
Утверждение: |
Код, исправляющий ошибок, обнаруживает ошибок. |
Булев шар
Определение: |
Булев шар — подмножество | вида . называется его центром, — радиусом. Булев шар с центром и радиусом обознчается .
Определение: |
Обьёмом шара | в называется величина . Обьём шара радиуса в обозначается .
Утверждение: |
Обьём шара не зависит от его центра. |
Заметим, что шар всегда можно получить из другого шара с помощью "параллельного переноса" на вектор (здесь обозначает побитовый ), т.е. . Покажем это. Необходимо доказать, что при и . . |
Можно сформулировать свойство кодов, исправляющих
ошибок, в терминах булевых шаров.Лемма: |
Пусть — код, исправляющий ошибок.
Тогда для любых неравных выполнено . |
Доказательство: |
Т.к код Допустим, исправляет ошибок, по определению . такие, что и , т.е существует , такой что и . Тогда по неравенству треугольника . Это противоречит тому, что . |
Определение и устранение ошибок в общем случае
Пусть
— исходный алфавит, — кодирование,расстояние Хэмминга между двумя кодами.
Граница Хэмминга, граница Гильберта
Теорема (Граница Хэмминга): |
Пусть — код для -символьного алфавита, исправляющий ошибок.
Тогда выполнено неравенство . |
Доказательство: |
Это прямое следствие предыдущей леммы. Всего есть попарно непересекающихся шаров. Их суммарный обьём равен , и он не может превосходить общее число возможных веткоров . |
Граница Хэмминга даёт верхнюю оценку на скорость передачи сообщений в канале с ошибками. Прологарифмировав неравенство, получим
. Здесь это плотность кодирования, количество информации в одном символе алфавита на размер кода. Таким образом, при кодировании с защитой от ошибок падает скорость передачи.Аналогично составляется оценка в другую сторону.
Теорема (Граница Гильберта): |
Если выполнено неравенство , то существует код для -символьного алфавита , исправляющий ошибок. |
Примером кода для случая код Хэмминга.
является