Изоморфизмы упорядоченных множеств — различия между версиями
(Метки: правка с мобильного устройства, правка из мобильной версии) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
{{Определение | {{Определение | ||
|definition=Два [[Отношение порядка|частично упорядоченных]] множества <tex>A</tex> и <tex>B</tex> называются '''изоморфными''' (англ. ''isomorphic''), если между ними существует '''изоморфизм''' (англ. ''isomorphism'') — взаимно однозначное соответствие, сохраняющее порядок. | |definition=Два [[Отношение порядка|частично упорядоченных]] множества <tex>A</tex> и <tex>B</tex> называются '''изоморфными''' (англ. ''isomorphic''), если между ними существует '''изоморфизм''' (англ. ''isomorphism'') — взаимно однозначное соответствие, сохраняющее порядок. |
Версия 06:20, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Определение: |
Два частично упорядоченных множества и называются изоморфными (англ. isomorphic), если между ними существует изоморфизм (англ. isomorphism) — взаимно однозначное соответствие, сохраняющее порядок.
Более формально, биекция |
Определение: |
Взаимно однозначное отображение частично упорядоченного множества в себя, являющееся изоморфизмом, называют автоморфизмом (англ.automorphism). |
Содержание
Изоморфизм конечных множеств
Теорема (1): |
Конечные линейно упорядоченные множества из одинакового числа элементов изоморфны. |
Доказательство: |
Конечное линейно упорядоченное множество всегда имеет наименьший элемент. Возьмём любой элемент | . Если он не наименьший, возьмём любой меньший него . Если и он не наименьший, ещё меньший — и так далее. Получим убывающую последовательность , которая рано или поздно должна оборваться, так как множество конечное. Присвоим наименьшему элементу номер . Из оставшихся снова выберем наименьший элемент и присвоим ему номер . Будем повторять эту операцию, пока в множестве не останется непомеченных элементов. Таким образом, мы доказали, что любое такое множество из элементов изоморфно множеству . Значит, между двумя конечными линейно упорядоченными множествами из одинакового числа элементов можно построить биекцию.
Изоморфизм счетных множеств
Теорема (2): |
Любые два счётных плотных[1] линейно упорядоченных множества без наибольшего и наименьшего элементов изоморфны. |
Доказательство: |
Пусть | и — данные множества. Будем строить соответствие пошагово. Пусть мы сделали некоторое соответствие для подмножеств и из элементов. Возьмем любой элемент одного из множеств (для определенности ), который не вошел в . Посмотрим, в каком отношении он находится со всеми элементами из . Он оказался либо наибольшим элементом, либо наименьшим элементом, либо стоящим между некоторыми элементами и . Найдем элемент в , находящийся в таком же отношении со всеми элементами . Мы можем это сделать, так как — плотное множество без наибольшего и наименьшего элементов. Будем считать эти два элемента эквивалентными. Тогда, мы научились получать из соответствия для элементов соответствие для элемента. Чтобы в пределе получить соответствие для всех элементов, воспользуемся счетностью множеств. Пронумеруем все элементы и на каждом четном шаге будем выбирать еще не взятый элемент из множества с наименьшим номером, а на нечетном — из .
Примеры
- Любые равные конечные подмножества натуральных чисел изоморфны по теореме 1.
- Множество рациональных чисел некоторого интервала теореме 2. и множество изоморфны по
- Тождественное отображение всегда является автоморфизмом.
- Не существует автоморфизма упорядоченного множества натуральных чисел, отличного от тождественного. Для это утверждение уже, очевидно, неверно.
- Для неотрицательных вещественных чисел операция извлечения корня является автоморфизмом.
См. также
Примeчания
- ↑ Линейно упорядоченное множество называют плотным, если в нём нет соседних элементов (то есть между любыми двумя есть третий).