Дерево, эквивалентные определения — различия между версиями
(→Доказательство эквивалентности) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
{{Определение | {{Определение | ||
|id = tree | |id = tree |
Версия 07:01, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Определение: |
Дерево (англ. tree) — связный ациклический граф. |
Определение: |
Лес (англ. forest) — граф, являющийся набором непересекающихся деревьев. |
Определения
Для графа
эквивалентны следующие утверждения:- — дерево.
- Любые две вершины графа соединены единственным простым путем.
- — связен и , где — количество вершин, а количество ребер.
- — ацикличен и , где — количество вершин, а количество ребер.
- несмежных вершин появляется один простой цикл. — ацикличен и при добавлении любого ребра для
- — связный граф, отличный от для , а также при добавлении любого ребра для несмежных вершин появляется один простой цикл.
- — граф, отличный от и , а также , где — количество вершин, а количество ребер, и при добавлении любого ребра для несмежных вершин появляется один простой цикл.
Доказательство эквивалентности
- Граф связен, поэтому любые две вершнины соединены путем. Граф ацикличен, значит путь единственен, а также прост, поскольку никакой путь не может зайти в одну вершину два раза, потому что это противоречит ацикличности.
- Очевидно, что граф связен. Докажем по индукции, соотношение . Утверждение очевидно для связных графов с одной и двумя вершинами. Предположим, что оно верно для графов, имеющих меньше вершин. Если же граф имеет вершин, то удаление из него любого ребра делает граф несвязным в силу единственности простых цепей; более того, получаемый граф будет иметь в точности две компоненты. По предположению индукции в каждой компоненте число вершин на единицу больше числа ребер. Таким образом, .
- Очевидно, что если граф связен и ребер на одно меньше, чем вершин, то он ацикличен. Преположим, что у нас есть p вершин, и мы добавляем ребра. Если мы добавили ребро для получения цикла, то добавили второй путь между парой вершин, а значит нам не хватит его на добавление вершины и мы получим не связный граф, что противоречит условию.
- компонент связности. Поскольку , то , а значит — связен. Таким образом наш граф — дерево, у которого между любой парой вершин есть единственный простой путь. Очевидно, при добавлении ребра появится второй путь между парой вершин, то есть мы получим цикл. — ациклический граф, значит каждая компонента связности графа является деревом. Так как в каждой из них вершин на единицу больше чем ребер, то , где — число
- Поскольку для содержит простой цикл, то не может им являться. связен, так как в ином случае можно было бы добавить ребро так, что граф остался бы ациклическим.
- Докажем, что любые две вершины графа соединены единственной простой цепью, а тогда поскольку , получим . Любые две вершины соединены простой цепью, так как — связен. Если две вершины соединены более чем одной простой цепью, то мы получим цикл. Причем он должен являться , так как иначе добавив ребро, соединяющее две вершины цикла, мы получим более одного простого цикла, что противоречит условию. является собственным подграфом , поскольку не является для . — связен, а значит есть вершина смежная с . Очевидно, можно добавить ребро так, что образуется более одного простого цикла. Если нельзя добавить ребра так, чтобы не нарушалось исходное условие, то граф является для , и мы получаем противоречие с исходным условием. Значит, любые две вершины графа соединены единственной простой цепью, что и требовалось.
- Если имеет простой цикл, то он является отдельной компонентой по ранее доказанному. Все остальные компоненты должны быть деревьями, но для выполнения соотношения должно быть не более одной компоненты отличной от , так как в . Если это дерево содержит простой путь длины 2, то в можно добавить ребро так, что образуются два простых цикла. Следовательно, этим деревом является или . Значит является или , которые мы исключили из рассмотрения. Значит наш граф ацикличен. Если ациклический и , то из и верно, что — связен. В итоге получаем, что является деревом по определению.
См. также
Источники информации
- Харари Ф. Теория графов. /пер. с англ. — изд. 2-е — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
- Википедия — дерево(теория графов)