Методы решения задач теории расписаний — различия между версиями
(→P | pmtn | C_max) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
== Сведение к другой задаче == | == Сведение к другой задаче == | ||
При сведении текущей задачи теории расписаний <tex> S </tex> к какой-то другой <tex> S' </tex> (не обязательно задаче теории расписаний) необходимо доказать два пункта: | При сведении текущей задачи теории расписаний <tex> S </tex> к какой-то другой <tex> S' </tex> (не обязательно задаче теории расписаний) необходимо доказать два пункта: | ||
Строка 21: | Строка 42: | ||
== Построение расписания по нижней оценке == | == Построение расписания по нижней оценке == | ||
− | Этот метод обычно применим к задачам, в которых целевая функция | + | Этот метод обычно применим к задачам, в которых целевая функция — <tex> C_{max}</tex>. |
Обычно построение расписания по нижней оценке происходит в два этапа: | Обычно построение расписания по нижней оценке происходит в два этапа: | ||
# Построение некоторого набора нижних ограничений на произвольное расписание для задачи <tex> S </tex>. | # Построение некоторого набора нижних ограничений на произвольное расписание для задачи <tex> S </tex>. | ||
Строка 42: | Строка 63: | ||
Из этих ограничений следует, что <tex> C_{max} = \max {\left( \max\limits_{i=1 \cdots n} p_i,~ \dfrac1m \sum\limits_{i=1}^n p_i \right)} </tex>. | Из этих ограничений следует, что <tex> C_{max} = \max {\left( \max\limits_{i=1 \cdots n} p_i,~ \dfrac1m \sum\limits_{i=1}^n p_i \right)} </tex>. | ||
− | Построим расписание, подходящее под эту границу: будем по очереди заполнять машины работами в произвольном порядке, и если очередная работа не помещается на текущей машине полностью, перенесем ее выходящую за <tex> C_{max} </tex> часть на следующую машину. Благодаря первому ограничению никакая работа не будет выполняться одновременно на двух станках, а благодаря второму | + | Построим расписание, подходящее под эту границу: будем по очереди заполнять машины работами в произвольном порядке, и если очередная работа не помещается на текущей машине полностью, перенесем ее выходящую за <tex> C_{max} </tex> часть на следующую машину. Благодаря первому ограничению никакая работа не будет выполняться одновременно на двух станках, а благодаря второму — не останется работы, которую мы не сможем выполнить. |
== Бинарный поиск по ответу == | == Бинарный поиск по ответу == | ||
Строка 52: | Строка 73: | ||
== Жадное построение расписания == | == Жадное построение расписания == | ||
Для решения задач теории расписаний часто применяется [[Определение матроида|теория матроидо]]в, а в частности — [[Теорема Радо-Эдмондса (жадный алгоритм)|жадный алгоритм]]: алгоритм решения задач путем выбора локально оптимальных решений на каждом этапе алгоритма. | Для решения задач теории расписаний часто применяется [[Определение матроида|теория матроидо]]в, а в частности — [[Теорема Радо-Эдмондса (жадный алгоритм)|жадный алгоритм]]: алгоритм решения задач путем выбора локально оптимальных решений на каждом этапе алгоритма. | ||
− | Естественно, далеко не все оптимизационные задачи можно решать жадно | + | Естественно, далеко не все оптимизационные задачи можно решать жадно — для этого сначала необходимо доказать оптимальность жадного выбора. |
С помощью этого метода решаются: | С помощью этого метода решаются: | ||
Строка 67: | Строка 88: | ||
Пусть предложенным нами алгоритмом мы получили какое-то решение <tex> S </tex>. Атомарными изменениями в этом решении <tex> S </tex> будем получать другие допустимые решения <tex> S' </tex> и докажем, что <tex> f(S) \leqslant f(S') </tex>. Тогда решение <tex> S </tex> — оптимально. | Пусть предложенным нами алгоритмом мы получили какое-то решение <tex> S </tex>. Атомарными изменениями в этом решении <tex> S </tex> будем получать другие допустимые решения <tex> S' </tex> и докажем, что <tex> f(S) \leqslant f(S') </tex>. Тогда решение <tex> S </tex> — оптимально. | ||
− | Проблема в этих рассуждениях в том, что ими мы доказываем локальную оптимальность алгоритма в решении <tex> S </tex>. Получение же глобального минимума может потребовать нескольких атомарных изменений в расписании, поэтому доказать оптимальность таким образом в общем случае невозможно. Как ближайшую аналогию, можно привести '''неправильное''' утверждение для произвольной функции <tex> f(\bar x) </tex> | + | Проблема в этих рассуждениях в том, что ими мы доказываем локальную оптимальность алгоритма в решении <tex> S </tex>. Получение же глобального минимума может потребовать нескольких атомарных изменений в расписании, поэтому доказать оптимальность таким образом в общем случае невозможно. Как ближайшую аналогию, можно привести '''неправильное''' утверждение для произвольной функции <tex> f(\bar x) </tex> — «если все частные производные <tex> \dfrac{\partial f}{\partial x_1} \dots \dfrac{\partial f}{\partial x_n} </tex> неотрицательны, то в точке <tex> \bar x </tex> наблюдается глобальный минимум». |
=== Правильно === | === Правильно === |
Версия 07:32, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Сведение к другой задаче
При сведении текущей задачи теории расписаний
к какой-то другой (не обязательно задаче теории расписаний) необходимо доказать два пункта:- Допустимость расписания, построенного с помощью задачи , или существование способа его трансформации в допустимое без нарушения оптимальности.
- Следствие того, что если мы оптимизируем , мы также оптимизируем ответ для .
Примечание: если требуется полиномиальное время для решения задачи, сведение к другой задаче и трансформация расписания в допустимое также должны происходить за полиномиальное время.
С помощью этого метода решаются:
- Задачи класса Open Shop при условии можно свести к задачам равной длительности на параллельных станках:
- Задачи класса Flow Shop при условии можно свести к задаче на одном станке:
- Часто в задачах, в которых допускаются прерывания, оптимальный ответ совпадает с соответствующими задачами без прерываний:
- Ряд задач можно свести к задаче поиска максимального потока:
- Некоторые задачи сводятся к другим похожим задачам теории расписаний путем преобразования их расписаний:
Построение расписания по нижней оценке
Этот метод обычно применим к задачам, в которых целевая функция —
. Обычно построение расписания по нижней оценке происходит в два этапа:- Построение некоторого набора нижних ограничений на произвольное расписание для задачи .
- Построение произвольного допустимого расписания, достигающего максимального ограничения из построенного набора.
С помощью этого метода решаются следующие задачи:
Ниже будет рассмотрен частный пример решения задачи подобным образом:
P | pmtn | C_max
Задача: |
Имеется | однородных машин, работающих параллельно, и работ, которые могут быть прерваны и продолжены позже. Необходимо минимизировать время выполнения всех работ
Найдем набор ограничений на значение
для произвольного допустимого расписания :- В допустимом расписании выполнение всех работ не может завершиться раньше одной из них, поэтому .
- Если все станки работали время , на них могло выполниться не больше работы, то есть и .
Из этих ограничений следует, что
.Построим расписание, подходящее под эту границу: будем по очереди заполнять машины работами в произвольном порядке, и если очередная работа не помещается на текущей машине полностью, перенесем ее выходящую за
часть на следующую машину. Благодаря первому ограничению никакая работа не будет выполняться одновременно на двух станках, а благодаря второму — не останется работы, которую мы не сможем выполнить.Бинарный поиск по ответу
Этот способ часто подходит для задач, в которых надо минимизировать
(если мы умеем решать соответствующую задачу существования расписания), реже для . Важно помнить, что если требуется полиномиальное по решение, оно не должно зависеть от логарифма ответа, но иногда ответ ограничен полиномом от , и мы можем применить этот метод.Примером решения задач подобным методом служит следующая задача:
Жадное построение расписания
Для решения задач теории расписаний часто применяется теория матроидов, а в частности — жадный алгоритм: алгоритм решения задач путем выбора локально оптимальных решений на каждом этапе алгоритма. Естественно, далеко не все оптимизационные задачи можно решать жадно — для этого сначала необходимо доказать оптимальность жадного выбора.
С помощью этого метода решаются:
Обычно оптимальность жадного выбора доказывают двумя способами:
Неправильно
Приведем пример часто распространенных неправильных действий при доказательстве оптимальности жадного алгоритма:
Пусть предложенным нами алгоритмом мы получили какое-то решение
. Атомарными изменениями в этом решении будем получать другие допустимые решения и докажем, что . Тогда решение — оптимально.Проблема в этих рассуждениях в том, что ими мы доказываем локальную оптимальность алгоритма в решении
. Получение же глобального минимума может потребовать нескольких атомарных изменений в расписании, поэтому доказать оптимальность таким образом в общем случае невозможно. Как ближайшую аналогию, можно привести неправильное утверждение для произвольной функции — «если все частные производные неотрицательны, то в точке наблюдается глобальный минимум».Правильно
При доказательстве оптимательности применима стратегия аргумент замены (англ. exchange argument). Стратегия заключается в рассмотрении текущего решения
и оптимального решения . Далее предлагается способ модификации в так, что:- , то есть также оптимально.
- «более похоже» на , чем на .
Если такой способ найден, получаем, что какой-то последовательностью модификаций
получим , из чего следует оптимальность .Отношение «более похоже» должно быть отношением частичного строгого порядка. Часто в качестве него можно выбрать отношение «длина наибольшего общего префикса решения и меньше наибольшего общего префикса решения и ». Тогда если мы сможем увеличить длину наибольшего общего префикса для оптимального решения, не нарушив оптимальности, мы приблизимся к . Можно выбирать и более сложные отношения, например, в доказательстве оптимальности алгоритма для решения задачи используется отношение «время последнего прерывания больше или количество прерываний меньше».
См. также.
Примечания
Источники информации
- Peter Brucker «Scheduling Algorithms», fifth edition, Springer ISBN 978-3-540-69515-8