Splay-дерево — различия между версиями
(→Анализ операции splay) |
(→Анализ операции splay) |
||
Строка 21: | Строка 21: | ||
Амортизационный анализ сплей-дерева проводится с помощью метода потенциалов. Потенциалом рассматриваемого дерева назовём сумму рангов его вершин. Ранг вершины <tex>v</tex> — это величина, обозначаемая <tex>r(v)</tex> и равная <tex>\log_2 C(v)</tex>, где <tex>C(v)</tex> — количество вершин в поддереве с корнем в <tex>v</tex>. | Амортизационный анализ сплей-дерева проводится с помощью метода потенциалов. Потенциалом рассматриваемого дерева назовём сумму рангов его вершин. Ранг вершины <tex>v</tex> — это величина, обозначаемая <tex>r(v)</tex> и равная <tex>\log_2 C(v)</tex>, где <tex>C(v)</tex> — количество вершин в поддереве с корнем в <tex>v</tex>. | ||
+ | {{Лемма | ||
+ | |statement= | ||
Амортизированное время операции splay вершины <tex>v</tex> в дереве с корнем <tex>t</tex> не превосходит <tex>3r(t) - 3r(v) + 1</tex> | Амортизированное время операции splay вершины <tex>v</tex> в дереве с корнем <tex>t</tex> не превосходит <tex>3r(t) - 3r(v) + 1</tex> | ||
+ | |proof= | ||
Проанализируем каждый шаг операции splay. Пусть <tex>r'</tex> и <tex>r</tex> — ранги вершин после шага и до него соответственно, <tex>u</tex> — предок вершины <tex>v</tex>, а <tex>w</tex> — предок <tex>u</tex> (если есть). | Проанализируем каждый шаг операции splay. Пусть <tex>r'</tex> и <tex>r</tex> — ранги вершин после шага и до него соответственно, <tex>u</tex> — предок вершины <tex>v</tex>, а <tex>w</tex> — предок <tex>u</tex> (если есть). | ||
Строка 44: | Строка 47: | ||
Поскольку за время выполнения операции splay выполняется не более одного шага типа zig, то суммарное время не будет превосходить <tex>3r(t) - 3r(v) + 1</tex>, поскольку утроенные ранги промежуточных вершин сокращаются (входят в сумму как с плюсом, так и с минусом). | Поскольку за время выполнения операции splay выполняется не более одного шага типа zig, то суммарное время не будет превосходить <tex>3r(t) - 3r(v) + 1</tex>, поскольку утроенные ранги промежуточных вершин сокращаются (входят в сумму как с плюсом, так и с минусом). | ||
+ | }} | ||
==Литература== | ==Литература== | ||
# Daniel Sleator, Robert Tarjan "A data structure for dynamic trees" | # Daniel Sleator, Robert Tarjan "A data structure for dynamic trees" |
Версия 20:20, 3 мая 2011
Сплей-дерево (Splay-tree) — саморегулирующееся двоичное дерево поиска. Относится к разряду сливаемых деревьев. Сплей-дерево было придумано Робертом Тарьяном и Даниелем Слейтером в 1983 году.
Основной идей для сохранение баланса дерева является перетаскивание найденной вершины в корень после каждой операции поиска.
Содержание
Move to Root
Пусть
- предок вершины . Эвристика "Move to Root" совершает повороты вокруг ребра , пока не окажется корнем дерева. Данный поворот аналогичен zig - повороту.Splay
"Splay" так же как и "Move to Root" перетаскивает вершину в корень дерева, но при этом она использует другую последовательность поворотов. Пока
не является корнем дерева выполняется следующее :- Zig. Если - корень дерева, то совершаем один поворот вокруг ребра , делая корнем дерева. Данный случай является крайним и выполняется только один раз в конце, если изначальная глубина была нечетной.
- Zig-Zig. Если - не корень дерева, а и - оба левые или оба правые дети, то делаем поворот ребра , а затем поворот ребра .
- Zig-Zag. Если - не корень дерева и - левый ребенок, а - правый, или наоборот, то делаем поворот вокруг ребра , а затем поворот нового ребра , где - новый родитель .
Данная операция занимает
времени, где - длина пути от до корня. В результате этой операции становится корнем дерева, а расстояние до корня от каждой вершины сокращается примерно пополам, что связано с разделением случаев "zig-zig" и "zig-zag".Анализ операции splay
Амортизационный анализ сплей-дерева проводится с помощью метода потенциалов. Потенциалом рассматриваемого дерева назовём сумму рангов его вершин. Ранг вершины
— это величина, обозначаемая и равная , где — количество вершин в поддереве с корнем в .Лемма: |
Амортизированное время операции splay вершины в дереве с корнем не превосходит |
Доказательство: |
Проанализируем каждый шаг операции splay. Пусть и — ранги вершин после шага и до него соответственно, — предок вершины , а — предок (если есть).Разберём случаи в зависимости от типа шага: Zig. Поскольку выполнен один поворот, то время амортизированное время выполнения шага (поскольку только у вершин и меняется ранг). Ранг вершины уменьшился, поэтому . Ранг вершины увеличился, поэтому . Следовательно, .Zig-zig. Выполнено два поворота, амортизированное время выполнения шага . Поскольку после поворотов поддерево с корнем в будет содержать все вершины, которые были в поддереве с корнем в (и только их), поэтому . Используя это равенство, получаем: , поскольку .Далее, так как , получаем, что .Мы утверждаем, что эта сумма не превосходит , то есть, что . Преобразуем полученное выражение следующим образом: .Из рисунка видно, что , значит, сумма выражений под логарифмами не превосходит единицы. Далее, рассмотрим сумму логарифмов . При произведение по неравенству между средними не превышает . А поскольку логарифм - функция возрастающая, то , что и является требуемым неравенством.Zig-zag. Выполнено два поворота, амортизированное время выполнения шага . Поскольку , то . Далее, так как , то .Мы утверждаем, что эта сумма не превосходит , то есть, что . Но, поскольку - аналогично доказанному ранее, что и требовалось доказать.Итого, получаем, что амортизированное время шага zig-zag не превосходит Поскольку за время выполнения операции splay выполняется не более одного шага типа zig, то суммарное время не будет превосходить . , поскольку утроенные ранги промежуточных вершин сокращаются (входят в сумму как с плюсом, так и с минусом). |
Литература
- Daniel Sleator, Robert Tarjan "A data structure for dynamic trees"