Примеры использования Марковских цепей — различия между версиями
(→Источники информации) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
== Обозначения == | == Обозначения == | ||
Строка 198: | Строка 219: | ||
== Источники информации == | == Источники информации == | ||
− | * ''Марков А. А.'', Распространение закона больших чисел на величины, зависящие друг от друга. | + | * ''Марков А. А.'', Распространение закона больших чисел на величины, зависящие друг от друга. — Известия физико-математического общества при Казанском университете. — 2-я серия. — Том 15. (1906) — С. 135—156. |
− | * ''Kemeny J. G., Snell J. L.'', Finite Markov chains. | + | * ''Kemeny J. G., Snell J. L.'', Finite Markov chains. — The University Series in Undergraduate Mathematics. — Princeton: Van Nostrand, 1960 (перевод: ''Кемени Дж. Дж., Снелл Дж. Л.'' Конечные цепи Маркова. — М.: Наука. 1970. — 272 с.) |
[[Категория:Дискретная математика и алгоритмы]] | [[Категория:Дискретная математика и алгоритмы]] | ||
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Марковские цепи ]] | [[Категория:Марковские цепи ]] |
Версия 08:02, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Обозначения
Предположим, что проводится серия экспериментов с возможными исходами
. Назовём эти исходы состояниями.- — вероятность того, что мы начинаем в состоянии ;
- — вероятность того, что в результате эксперимента состояние было изменено от состояния к состоянию ;
Если
вероятность того, что исходом эксперимента будет состояние . Тогда.
Это означает, что вероятность исхода в состоянии равна сумме вероятностей начать эксперимент в некотором другом состоянии и окончить в .
Также заметим, что:
.
- Матрица называется матрицей перехода. В общем случае она имеет вид:
.
Пусть
и
тогда
.Использование матриц приводит к более компактной записи условий. По своей сути, перемножение строки
с матрицей эквивалентно уравнению , рассмотренному ранее.Прогноз погоды
Условие
Погода классифицируется в прогнозах как ясная, умеренно пасмурная и пасмурная.
- Если погода ясная, то вероятность, что она будет ясной на следующий день, составляет ; вероятность, что она будет умеренно пасмурной, равна ; а вероятность пасмурной погоды на следующий день составляет .
- Если погода умеренно пасмурная, то вероятность, что на следующий день она будет ясной, равна ; вероятность, что погода останется умеренно пасмурной, равна ; а вероятность пасмурной погоды на следующий день составляет .
- Если же погода пасмурная, то вероятность, что она будет ясной на следующий день составляет ; вероятность что она станет умеренно пасмурной, равна ; вероятность что на следующий день она останется пасмурной, равна .
Вопрос 1 : Если вероятность ясной погоды в воскресенье равна , а вероятность умеренно пасмурной — , то какова вероятность, что погода в понедельник будет ясной?
Вопрос 2 : Какова вероятность, что во вторник погода будет умеренно пасмурной?
Решение
Если порядок, в котором перечисляются погодные условия, таков: ясно, умеренно пасмурно и пасмурно, то:
,
.
Следовательно,
и вероятность, что в понедельник будет ясная погода, равна .Пусть
— вероятность того, что во вторник будет ясная погода, — вероятность того, что во вторник будет умеренно пасмурно и — вероятность того, что во вторник будет пасмурно.Пусть
.Тогда
.Следовательно, вероятность того, что во вторник будет умеренно пасмурная погода равна
.
Пусть — вероятность, что исходом m-го проведения эксперимента будет состояние и
Теорема: |
Для любого положительного целого числа выполняется . |
Доказательство: |
Докажем теорему, используя индукцию. Было показано (в примере про погоду), что для утверждение справедливо. Предположим, что оно справедливо для , так что Поскольку, то |
Оценка будущих продаж
Цепи Маркова также применяются при оценке будущих продаж. Например, сделав опрос среди покупателей той или иной марки автомобиля о их следующем выборе, можно составить матрицу .
Условие
В процессе опроса владельцев автомобилей трех американских марок: марки
, марки , марки , им был задан вопрос о том, какую торговую марку они бы выбрали для следующей покупки.- Среди владельцев автомобилей марки сказали что выберут опять эту же марку, сказали, что они бы перешли на марку , а заявили, что предпочли бы марку .
- Среди владельцев автомобилей марки сказали, что перейдут на марку , в то время как заявили, что приобрели бы опять автомобиль марки , а заявили, что в следующий раз предпочли бы марку .
- Среди владельцев автомобилей ответили, что перешли бы на марку , сказали, что перешли бы на марку , а заявили, что остались бы верны той же марке .
Вопрос 1 : Если некто приобрел автомобиль марки
, то какова вероятность, что его второй машиной будет автомобиль маркиВопрос 2 : Если при покупке первой машины покупатель подбросил монету, выбирая между автомобилями марки
и , то какова вероятность, что его третьей машиной станет автомобиль маркиРешение
Матрица перехода для этого события имеет вид:
.
Для ответа на первый вопрос имеем:
, поэтому.
Вероятность того, что вторая машина будет марки
, равна . Для ответа на второй вопрос требуется найти.
Для
имеем ипоэтому вероятность того, что второй автомобиль будет марки равна .
См. также
Источники информации
- Марков А. А., Распространение закона больших чисел на величины, зависящие друг от друга. — Известия физико-математического общества при Казанском университете. — 2-я серия. — Том 15. (1906) — С. 135—156.
- Kemeny J. G., Snell J. L., Finite Markov chains. — The University Series in Undergraduate Mathematics. — Princeton: Van Nostrand, 1960 (перевод: Кемени Дж. Дж., Снелл Дж. Л. Конечные цепи Маркова. — М.: Наука. 1970. — 272 с.)