Матрица смежности графа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Оценка памяти и времени работы)
Строка 1: Строка 1:
 +
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 +
|+
 +
|-align="center"
 +
|'''НЕТ ВОЙНЕ'''
 +
|-style="font-size: 16px;"
 +
|
 +
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 +
 +
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 +
 +
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 +
 +
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 +
 +
''Антивоенный комитет России''
 +
|-style="font-size: 16px;"
 +
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 +
|-style="font-size: 16px;"
 +
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 +
|}
 +
 
__NOTOC__
 
__NOTOC__
 
{{Определение
 
{{Определение

Версия 08:18, 1 сентября 2022

НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.


Определение:
Матрицей смежности (англ. Adjacency matrix) [math]A=||\alpha_{i,j}||[/math] невзвешенного графа [math]G=(V,E)[/math] называется матрица [math]A_{[V\times{}V]}[/math], в которой [math]\alpha_{i,j}[/math] — количество рёбер, соединяющих вершины [math]v_i[/math] и [math]v_j[/math], причём при [math]i=j[/math] каждую петлю учитываем дважды, если граф не является ориентированным, и один раз, если граф ориентирован.


Определение:
Матрицей смежности (англ. Adjacency matrix) [math]A=||\alpha_{i,j}||[/math] взвешенного графа [math]G=(V,E)[/math] называется матрица [math]A_{[V\times{}V]}[/math], в которой [math]\alpha_{i,j}[/math] — вес ребра, соединяющего вершины [math]v_i[/math] и [math]v_j[/math].


Примеры матриц смежности:

Взвешенность графа Вид графа Матрица смежности
Не взвешенный граф Adjacency matrix.png [math]\begin{pmatrix} 0 & 1 & 0 & 0 & 1\\ 1 & 0 & 1 & 1 & 1\\ 0 & 1 & 0 & 1 & 0\\ 0 & 1 & 1 & 0 & 1\\ 1 & 1 & 0 & 1 & 0\\ \end{pmatrix}[/math]
Взвешенный граф Weighted graph.png [math]\begin{pmatrix} 0 & 40 & \infty & \infty & 18\\ 40 & 0 & 22 & 6 & 15\\ \infty & 22 & 0 & 14 & \infty \\ \infty & 6 & 14 & 0 & 20\\ 18 & 15 & \infty & 20 & 0 \\ \end{pmatrix}[/math]

Оценка памяти и времени работы

Матрица смежности занимает [math]O(|V|^2)[/math] памяти. За [math]O(1)[/math] можно определить вес ребра или его наличие между любыми двумя вершинами. Такой способ хранения графа хорошо подходит для плотных графов, в которых число рёбер между различными парами вершин [math]\Omega(|V|^2)[/math].

Свойства

Утверждение:
Для графов без петель и кратных рёбер матрица смежности бинарна (состоит из нулей и единиц).
Утверждение:
Для графов без петель и кратных рёбер главная диагональ матрицы смежности целиком состоит из нулей.
Утверждение (о сумме элементов строки матрицы смежности для ориентированного графа):
Сумма элементов [math]i[/math]-й строки равна [math]deg^- v_i[/math], то есть [math]\sum\limits_{j=1}^{n}\alpha_{i,j} = deg^- v_i[/math]. Аналогично сумма элементов [math]j[/math]-го стоблца равна [math]deg^+ v_j[/math], то есть [math]\sum\limits_{i=1}^{n}\alpha_{i,j} = deg^+ v_j[/math].


Утверждение (о сумме элементов строки матрицы смежности для неориентированного графа):
Матрица смежности является симметричной.
[math]\triangleright[/math]
Сумма элементов [math]i[/math]-й строки равна [math]deg \; v_i[/math], то есть [math]\sum\limits_{j=1}^{n}\alpha_{i,j} = deg \; v_i[/math]. Вследствие симметричности суммы элементов [math]i[/math]-й строки и [math]i[/math]-го столбца равны.
[math]\triangleleft[/math]


Теорема (о поиске количества путей заданной длины с помощью матрицы смежности ориентированного графа):
Пусть [math]A_{[V\times{}V]}=\alpha_{i,j}[/math]матрица смежности ориентированного графа [math]G=(V,E)[/math] без петель и [math]A^l=\gamma_{i,j}[/math], где [math]l\in\mathbb{N}[/math]. Тогда [math]\gamma_{i,j}[/math] равно количеству путей [math]v_i\leadsto{}v_j[/math] длины [math]l[/math].
Доказательство:
[math]\triangleright[/math]

Утверждение очевидно при [math]l = 1[/math]. Пусть [math]l \gt 1[/math], и утверждение верно для [math]l - 1[/math]. Тогда [math]A^{l-1}=\varepsilon_{i,j}[/math], где [math]\varepsilon_{i,j}[/math] равно количеству путей [math]v_i\leadsto{}v_j[/math] длины [math]l-1[/math]. Следовательно,

[math]\gamma_{i,j}=\sum\limits_{s=1}^{n}{\varepsilon_{i,s}\alpha_{s,j}}[/math]
равно числу путей [math]v_i\leadsto{}v_j[/math] длины [math]l[/math], так как каждый такой маршрут состоит из путей [math]v_i\leadsto{}v_s[/math] длины [math]l-1[/math] и ребра, ведущего из предпоследней вершины [math]v_s[/math] пути в его последнюю вершину [math]v_j[/math].
[math]\triangleleft[/math]

См. также

Источники информации

  • Харари Фрэнк Теория графов Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
  • Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5