Получение номера по объекту — различия между версиями
Npanuhin (обсуждение | вклад) м (Лишняя переменная P, кол-во перестановок = n!) (Метки: правка с мобильного устройства, правка из мобильной версии) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
== Описание алгоритма == | == Описание алгоритма == | ||
Номер данного [[Комбинаторные объекты|комбинаторного объекта]] равен количеству меньших в [[Лексикографический порядок|лексикографическом порядке]] комбинаторных объектов (нумерацию ведём с <tex>0</tex>). Все объекты меньшие данного можно разбить на непересекающиеся группы по длине совпадающего префикса. Тогда количество меньших объектов можно представить как сумму количеств объектов у которых префикс длины <tex>i</tex> совпадает, а <tex>i+1</tex> элемент лексикографически меньше <tex>(i+1)</tex>-го в данном объекте (<tex>i = 0..n-1</tex>). | Номер данного [[Комбинаторные объекты|комбинаторного объекта]] равен количеству меньших в [[Лексикографический порядок|лексикографическом порядке]] комбинаторных объектов (нумерацию ведём с <tex>0</tex>). Все объекты меньшие данного можно разбить на непересекающиеся группы по длине совпадающего префикса. Тогда количество меньших объектов можно представить как сумму количеств объектов у которых префикс длины <tex>i</tex> совпадает, а <tex>i+1</tex> элемент лексикографически меньше <tex>(i+1)</tex>-го в данном объекте (<tex>i = 0..n-1</tex>). |
Версия 08:25, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Описание алгоритма
Номер данного комбинаторного объекта равен количеству меньших в лексикографическом порядке комбинаторных объектов (нумерацию ведём с ). Все объекты меньшие данного можно разбить на непересекающиеся группы по длине совпадающего префикса. Тогда количество меньших объектов можно представить как сумму количеств объектов у которых префикс длины совпадает, а элемент лексикографически меньше -го в данном объекте ( ). Следующий алгоритм вычисляет эту сумму:
- — искомый номер комбинаторного объекта,
- — данный комбинаторный обьект, состоящий из числовых представлений лексикографически упорядоченных элементов множества ,
- — количество комбинаторных объектов с префиксом от до равным данному и с -м элементом равным ,
int object2num(a: list<A>): numOfObject = 0 for i = 1 to n // перебираем элементы комбинаторного объекта for j = 1 to a[i] - 1 // перебираем элементы, в лексикографическом порядке меньшие рассматриваемого if элементможно поставить на -e место numOfObject += d[i][j] return numOfObject
Сложность алгоритма —
, где — количество различных элементов, которые могут находиться в данном комбинаторном объекте. Например, для битового вектора поскольку возможны только и . Количества комбинаторных объектов с заданными префиксами считаются известными, и их подсчет в сложности не учитывается. Приведем примеры способов получения номеров некоторых из комбинаторных объектов по данному объекту.Битовые вектора
Рассмотрим алгоритм получения номера
в лексикографическом порядке данного битового вектора размера . Всего существует битовых векторов длины . На каждой позиции может стоять один из двух элементов независимо от того, какие элементы находятся в префиксе, поэтому поиск элементов меньше рассматриваемого можно упростить до проверки элемента на равенство :- — данный вектор,
- — искомый номер вектора,
int bitvector2num(bitvector: list<int>):
numOfBitvector = 0
for i = 1 to n
if bitvector[i] == 1
numOfBitvector +=
return numOfBitvector
Асимптотика алгоритма —
.Перестановки
Рассмотрим алгоритм получения номера в лексикографическом порядке по данной перестановке размера
,- — данная перестановка,
- — количество перестановок размера ,
- — использовали ли мы уже эту цифру в перестановке,
int permutation2num(a: list<int>): numOfPermutation = 0 for i = 1 to n //— количество элементов в перестановке for j = 1 to a[i] - 1 // перебираем элементы, лексикографически меньшие нашего, которые могут стоять на -м месте if was[j] == false // если элемент ранее не был использован numOfPermutation += (n - i)! // все перестановки с префиксом длиной равным нашему, и -й элемент у которых меньше нашего в лексикографическом порядке, идут раньше данной перестановки was[a[i]] = true // -й элемент использован return numOfPermutation
Асимптотика алгоритма —
и для предподсчёта.Сочетания
Рассмотрим алгоритм получения номера в лексикографическом порядке данного сочетания из
по . Как известно, количество сочетаний из по обозначается как . Тогда число сочетаний, в которых на позиции стоит значение , равно ; число сочетаний, в которых на позиции стоит значение , равно . Аналогично продолжаем по следующим позициям:- — искомый номер сочетания,
- — количество сочетаний из по , ,
- — данное сочетание, состоящее из чисел от до , из технических соображений припишем ноль в начало сочетания: ,
int choose2num(choose: list<int>): numOfChoose = 0 for i = 1 to K for j = choose[i - 1] + 1 to choose[i] - 1 numOfChoose += C[N - j][K - i] return numOfChoose
Асимптотика алгоритма —
и для предподсчёта.Разбиение на слагаемые
Рассмотрим алгоритм получения номера, в лексикографическом порядке, по данному разбиению на слагаемые числа
. Нужно помнить о том, что разбиения, отличающиеся только порядком слагаемых, считаются одинаковыми. Из всех разбиений, получаемых перестановками слагаемых, выберем то, где слагаемые упорядочены лексикографически, и будем строить его.- — искомый номер разбиения
- — последнее поставленное число в разбиении.
- — сумма, которую мы уже поставили.
- — данное разбиение
- — количество разбиений числа на слагаемые, где каждое слагаемое .
Пересчитывать
будем по возрастанию , а при равенстве — по убыванию .Разбиение числа, в котором каждое слагаемое
может либо содержать слагаемое (таких разбиений ), либо не содержать (таких разбиений ).Получаем рекуррентное соотношение для подсчёта
:
int part2num(part: list<int>):
numOfPart = 0, last = 0, sum = 0
for i = 1 to part.size
for j = last to part[i] - 1 // перебираем все элементы, лексикографически меньшие текущего, но не меньшие предыдущего
numOfPart += d[N - sum - j][j] // прибавляем количество перестановок, которые могли начинаться с
sum += part[i] // увеличиваем уже поставленную сумму
last = part[i] // обновляем последний поставленный элемент
return numOfPart // возвращаем ответ
Стоит отметить, что количество итераций вложенного цикла не более, чем
, так как всего количество возможных слагаемых — , и ни какое из них цикл не обработает дважды, поскольку каждый раз начинает с , которое больше чем любое из обработанных чисел. Поэтому асимптотика алгоритма — .Асимптотика алгоритма —
и на предподсчёт.См. также
- Получение объекта по номеру
- Получение следующего объекта
- Получение номера правильной скобочной последовательности
Источники информации
- Программирование в алгоритмах / С. М. Окулов. — М.: БИНОМ. Лаборатория знаний, 2002. стр.31
- Дискретная математика. Теория и практика решения задач по информатике / С. М. Окулов. — М.: БИНОМ. Лаборатория знаний, 2008.