Класс P — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 +
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 +
|+
 +
|-align="center"
 +
|'''НЕТ ВОЙНЕ'''
 +
|-style="font-size: 16px;"
 +
|
 +
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 +
 +
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 +
 +
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 +
 +
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 +
 +
''Антивоенный комитет России''
 +
|-style="font-size: 16px;"
 +
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 +
|-style="font-size: 16px;"
 +
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 +
|}
 +
 
== Определение ==
 
== Определение ==
 
{{Определение
 
{{Определение

Версия 08:33, 1 сентября 2022

НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.

Определение

Определение:
Класс [math]\mathrm{P}[/math] — класс языков (задач), разрешимых на детерминированной машине Тьюринга за полиномиальное время, то есть: [math]\mathrm{P} = \bigcup\limits_{p \in poly}DTIME(p(n))[/math][1].


Итого, язык [math]L[/math] лежит в классе [math]\mathrm{P}[/math] тогда и только тогда, когда существует такая детерминированная машина Тьюринга [math]m[/math], что:

  1. [math]m[/math] завершает свою работу за полиномиальное время на любых входных данных;
  2. если на вход машине [math]m[/math] подать слово [math]l \in L[/math], то она допустит его;
  3. если на вход машине [math]m[/math] подать слово [math]l \not\in L[/math], то она не допустит его.

Устойчивость класса P к изменению модели вычислений

Машина Тьюринга может симулировать другие модели вычислений (например, языки программирования) с не более чем полиномиальным замедлением. Благодаря этому, класс [math]\mathrm{P}[/math] на этих моделях не становится шире.

Согласно тезису Чёрча-Тьюринга, любой физически реализуемый алгоритм можно реализовать на машине Тьюринга. Так что класс [math]\mathrm{P}[/math] устойчив и в обратном преобразовании модели вычислений.

Свойства класса P

Теорема:
Класс [math]\mathrm{P}[/math] замкнут относительно сведения по Карпу. [math]L \in \mathrm{P}, M \le L \Rightarrow M \in \mathrm{P}[/math].
Доказательство:
[math]\triangleright[/math]

Пусть [math]p[/math] — разрешитель [math]L[/math], работающий за полиномиальное время. [math] (M \leq L) \overset{\underset{\mathrm{def}}{}}{\iff} ( \exists f \in \mathrm{\widetilde{P}} : w \in M \Leftrightarrow f(w) \in L ) [/math]. Построим разрешитель [math]q[/math] для языка [math]M[/math].

[math]q(w):[/math]
    if ([math]p(f(w))[/math])
        return true
    return false
Разрешитель [math]q[/math] работает за полиномиальное время, так как композиция полиномов есть полином.
[math]\triangleleft[/math]


Теорема:
[math]D \subseteq \mathrm{P} \Rightarrow \mathrm{P}=\mathrm{P}^D[/math]. В частности, из этого следует, что [math]\mathrm{P}=\mathrm{P^P}[/math].
Доказательство:
[math]\triangleright[/math]

Понятно, что [math]\mathrm{P} \subset \mathrm{P}^D[/math]. Докажем, что [math]\mathrm{P}^D \subset \mathrm{P}[/math].

[math]L \in \mathrm{P}^D \Rightarrow \exists A \in D: L \in \mathrm{P}^A[/math].

Пусть [math]p[/math] — разрешитель [math]L[/math], работающий за полиномиальное время [math]f(n)[/math] и использующий оракул языка [math]A[/math]. Пусть [math]q[/math] — разрешитель [math]A[/math], работающий за полиномиальное время [math]g(n)[/math].

Представим себе разрешитель [math]L[/math], работающий как [math]p[/math], но использующий [math]q[/math] вместо оракула [math]A[/math]. Его время работы ограничено сверху значением [math]f(n) + \sum\limits_{i=1}^{f(n)} g(f(n)) = f(n) + f(n) g(f(n))[/math], что является полиномом (обращений к [math]q[/math] максимум [math]f(n)[/math]; на вход для [math]q[/math] можем подать максимум [math]f(n)[/math] данных, так как больше сгенерировать бы не успели). Значит, [math]L \in \mathrm{P}[/math].
[math]\triangleleft[/math]


Теорема:
Класс [math]\mathrm{P}[/math] замкнут относительно операций объединения, пересечения, конкатенации, замыкания Клини и дополнения. Если [math]L_1, L_2 \in \mathrm{P}[/math], то: [math]L_1 \cup L_2 \in \mathrm{P}[/math], [math]L_1 \cap L_2 \in \mathrm{P}[/math], [math]L_1 L_2 \in \mathrm{P}[/math], [math]L_1^* \in \mathrm{P}[/math] и [math]\overline{L_1} \in \mathrm{P}[/math].
Доказательство:
[math]\triangleright[/math]

Докажем замкнутость замыкания Клини. Остальные доказательства строятся аналогично.

Пусть [math]p[/math] — разрешитель [math]L_1[/math], работающий за полиномиальное время. Построим разрешитель [math]q[/math] для языка [math]L_1^*[/math].

[math]q(w):[/math]
    [math]n = |w|[/math]
    [math]endPoses = \{0\}[/math]  //позиции, где могут заканчиваться слова, принадлежащие [math]L_1[/math]
    for ([math]i = 1 \ldots n[/math])
        for ([math]j \in endPoses[/math])
            if ([math]p(w[j+1 \ldots i])[/math]) {
                if ([math]i = n[/math])
                    return true
                [math]endPoses[/math] [math]\cup = \{i\}[/math]
            }
    return false
Худшая оценка времени работы разрешителя [math]q[/math] равна [math]n^2 O(p(w))[/math], так как в множестве [math]endPoses[/math] может быть максимум [math]n[/math] элементов, значит итерироваться по множеству можно за [math]n[/math], если реализовать его на основе битового массива, например; при этом операция добавления элемента в множество будет работать за [math]O(1)[/math]. Итого, разрешитель [math]q[/math] работает за полиномиальное время (так как произведение полиномов есть полином). Значит [math]L_1^* \in \mathrm{P}[/math].
[math]\triangleleft[/math]

Примеры задач и языков из P

Класс задач, разрешимых за полиномиальное время достаточно широк, вот несколько его представителей:

  • определение связности графов;
  • вычисление наибольшего общего делителя;
  • задача линейного программирования;
  • проверка простоты числа.[2]

Но существуют задачи не из [math]\mathrm{P}[/math], так как из теоремы о временной иерархии следует, что [math]\exists L \in \mathrm{EXP}\setminus\mathrm{P}[/math].


Теорема:
Класс регулярных языков входит в класс [math]\mathrm{P}[/math], то есть: [math]\mathrm{Reg} \subset \mathrm{P}[/math].
Доказательство:
[math]\triangleright[/math]
[math]\mathrm{Reg} \subset \mathrm{TS}(n, 1) \subset \mathrm{P}[/math]
[math]\triangleleft[/math]


Теорема:
Класс контекстно-свободных языков входит в класс [math]\mathrm{P}[/math], то есть: [math]\mathrm{CFL} \subset P[/math].
Доказательство:
[math]\triangleright[/math]

[math]\mathrm{CFL} \subset \mathrm{TS}(n^3, n^2) \subset \mathrm{P}[/math]

Первое включение выполняется благодаря существованию алгоритма Эрли.
[math]\triangleleft[/math]

P-полные задачи

Говоря про [math]\mathrm{P}[/math]-полноту, мы, как правило, подразумеваем [math]\mathrm{P}[/math]-полноту относительно [math]\widetilde{\mathrm{L}}[/math]-сведения.[3]


Определение:
[math]CIRCVAL = \{\langle C, x_1,\ldots,x_n\rangle \bigm| C(x_1,\ldots,x_n) = 1\}[/math], где [math]C[/math] это логическая схема.


Теорема:
[math]CIRCVAL[/math][math]\mathrm{P}[/math]-полная задача.[4]

Ссылки