Предикат "левый поворот" — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Bounding box)
Строка 1: Строка 1:
 +
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 +
|+
 +
|-align="center"
 +
|'''НЕТ ВОЙНЕ'''
 +
|-style="font-size: 16px;"
 +
|
 +
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 +
 +
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 +
 +
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 +
 +
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 +
 +
''Антивоенный комитет России''
 +
|-style="font-size: 16px;"
 +
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 +
|-style="font-size: 16px;"
 +
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 +
|}
 +
 
Даны два отрезка, которые задаются начальной и конечной точками <tex>a,b\ \mathcal{2}\ \mathbb R^2</tex> и определяются как множества точек <tex>s\ =\ \{(1-t)a + tb,\ t\ \in [0;1]\}</tex>. Требуется проверить существование множества их общих точек. Для определения этого факта в вычислительной геометрии используется предикат ''левый поворот'' (или ''по часовой стрелке'').
 
Даны два отрезка, которые задаются начальной и конечной точками <tex>a,b\ \mathcal{2}\ \mathbb R^2</tex> и определяются как множества точек <tex>s\ =\ \{(1-t)a + tb,\ t\ \in [0;1]\}</tex>. Требуется проверить существование множества их общих точек. Для определения этого факта в вычислительной геометрии используется предикат ''левый поворот'' (или ''по часовой стрелке'').
 
Рассмотрим возможные расположения точек и самих отрезков относительно друг друга:
 
Рассмотрим возможные расположения точек и самих отрезков относительно друг друга:

Версия 08:57, 1 сентября 2022

НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.

Даны два отрезка, которые задаются начальной и конечной точками [math]a,b\ \mathcal{2}\ \mathbb R^2[/math] и определяются как множества точек [math]s\ =\ \{(1-t)a + tb,\ t\ \in [0;1]\}[/math]. Требуется проверить существование множества их общих точек. Для определения этого факта в вычислительной геометрии используется предикат левый поворот (или по часовой стрелке). Рассмотрим возможные расположения точек и самих отрезков относительно друг друга:

Cross.png Two segments.png Touch.jpg

Определим, лежат ли точки концов отрезков по разные стороны от другого отрезка.

Определение:
[math] $$ \operatorname{LeftTurn}(a, b, c) =\left\{ \begin{array}{rl} -1 &\mbox{, if}\ (c - a)\times(b - a) \lt 0\\ 0 &\mbox{, if}\ (c - a)\times(b - a) = 0\\ 1 &\mbox{, if}\ (c - a)\times(b - a) \gt 0 \end{array} \right. $$ [/math]

Распишем подробнее: [math](c - a)\times(b - a) = (c_x - a_x)(b_y - a_y) - (c_y - a_y)(b_x - a_x) = V[/math]

Какие при этом у нас будут погрешности? Допустим, что все числа положительные и будем писать без модулей:

Замечание: при сложении складываются абсолютные погрешности, при умножении складываются относительные погрешности.

[math] \delta (c - a)\times(b - a) = A \varepsilon \left(\frac{(c_x + a_x)}{(c_x \cdot a_x)} + \frac{(b_y + a_y)}{(b_y \cdot a_y)}\right) + B \varepsilon \left(\frac{(c_y + a_y)}{(c_y \cdot a_y)} + \frac{(b_x + a_x)}{(b_x \cdot a_x)}\right)[/math]

Именно поэтому, когда угол между отрезками АВ и АС крайне мал, мы можем получить неверное значение предиката.

Tiny angle.jpg

Заметим, что все координаты (а, значит, и наши вычисления) производятся в вещественных числах, а это значит, что при вычислениях мы можем допустить ошибку. Распишем вещественное исчисление:

[math]V = (c - a)\times(b - a) \approx (c_x \ominus a_x)\otimes(b_y \ominus a_y) \ominus (c_y \ominus a_y)\otimes(b_x \ominus a_x) =[/math]

[math]= \big((c_x - a_x)(b_y - a_y)(1 + \delta_1)(1 + \delta_2)(1 + \delta_3)\ -[/math]

[math]-\ (c_y - a_y)(b_x - a_x)(1 + \delta_4)(1 + \delta_5)(1 + \delta_6)\big)(1 + \delta_7) = \tilde{V}[/math]

[math]\mid\delta_i\mid \le \varepsilon_m = 2^{-54}[/math];

Получим некую окрестность [math]|V - \tilde{V}| \le 8 \varepsilon_m[/math], если ноль попадает в наш интервал, то приходится пользоваться более тяжелой артиллерией, такими как adaptive precision arithmetic, либо интервальная арифметика. Во второй, исходные переменные будут вырожденными интервалами. Из-за погрешностей, возникающих при округлении вещественных чисел, истинные значения операций нам будут неизвестны, но они обязательно будет содержаться в посчитанных интервалах.

Замечание: расписанное неравенство смотрите в другом конспекте

Bounding box

Ещё следует обратить внимание на граничные случаи, когда какие-то точки попадают на саму прямую. При этом возникает единственный особый случай, когда вышеописанные проверки ничего не дадут — случай, когда оба отрезка лежат на одной прямой. Этот случай рассматривается отдельно. Для этого достаточно проверить, что проекции этих двух отрезков на оси X и Y пересекаются (часто эту проверку называют проверкой на bounding box). Но отметим, что чаще всего данный предикат используют для трех точек, где одна из них относится сразу к двум отрезкам.

Bounting box().png Bounting box .png