Покрытия, закрытые множества — различия между версиями
(→См. также) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
== Покрытие == | == Покрытие == | ||
Версия 09:30, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Покрытие
Определение: |
Пусть | — матроид. Тогда покрытие (англ. span) множества — это множество
Далее
будет указываться, как
Определение: |
Утверждение: |
Эти определения эквивалентны. |
Понятно, что элементы из Иначе говоря, не должно существовать множеств подходят под оба определения. Для остальных же равенство означает, что не найдётся множеств Для такого обязательно будет выполнено в противном случае что приведёт к Тогда для верно Из последнего получается, что и учитывая имеем |
Утверждение: |
Для множества выполнено |
Покажем, что следующее определение замыкания равносильно тому, которое было дано ранее: По сравнению со старым определением появилось два ограничения, нужно убедится в том, что они не существены. Сначала рассмотрим
Второе ограничение — можно наложить по той причине, что элементы и так входят в замыкание благодаря левой части объединения.В соответствии с этим определением, замыкание множества — это, кроме всех элементов , все такие что какое-то из максимальных по мощности независимых подмножеств нельзя дополнить -ом, оставив это множество независимым. Определение покрытия отличается только квантором — вместо "какое-то" нужно поставить "любое".Учитывая, что описывает непустое множество таких (по определению ранга), будет верным следствие: |
Теорема: |
Пусть S — конечное множество. Функция является покрытием матроида тогда и только тогда, когда удовлетворяет следующим свойствам:
|
Доказательство: |
Необходимое условие. Пусть полумодулярность ранговой функции мы имеем: будет функцией покрытия матроида с ранговой функцией . Покажем, что . Пусть и . Предположим, что не принадлежит . Тогда поЭто показывает, что .Заметим, что эквивалентно таким выражениям: и . Следовательното есть, .Достаточное условие. Пусть функция удовлетворяет свойствам и определена, как:Сперва посмотрим на следующее:
Действительно, если , тогда , по определению независимого множества. С другой стороны, . Кроме того, если , тогда по определению независимого множества получаем, что . Если , тогда . Предположим, что , т.е. . Мы знаем, что , так как . Таким образом по свойству доказывается (для ), .Теперь покажем, что — матроид. Очевидно, . Для начала покажем, что закрытое множество под полученным подмножеством, Пусть и . Мы видим, что . Предположим наоборот, что . Тогда по второму свойству . Следовательно, , что противоречит условию, что .Для того чтобы проверить 3-ю аксиому матроидов, допустим, что , и . Пусть и . Предположим, что , т.е. , и так по применяется к , . Поэтому, и . Таким образом (как и ) и поэтому, применяется к и к . Таким образом является матроидом. Теперь покажем, что . Выберем такое множество , чтобы увидеть, что , пусть будет базой (в ). Тогда используя (1), мы получаем: |
Закрытые множества
Определение: |
Множество | называется закрытым (англ. closed set, flat), если Класс закрытых множеств обозначается
Теорема: |
Пусть — какое-то множество и . Закрытые множества обладают следующими свойствами:
|
Доказательство: |
Необходимость. Пусть Достаточность. Пусть семейство закрытых множеств матроида . Первое свойство следует из , по определению закрытого множества мы получаем, что пересечение закрытых множеств закрыто. Посмотрим на свойства, допустим, что такой существует, и выберем . Таким образом . Согласно тому, что , мы получаем, что . Поэтому, по второму свойству покрывающего множества для получаем противоречие, т.к. . удовлетворяет свойствам закрытого множества и будет наименьшем множеством в содержащий , для . Поскольку , этого достаточно, чтобы увидеть, что удовлетворяет свойствам покрытого множества. Первое свойство тривиально. Рассмотрим второе свойство, пусть и . Тогда . Следовательно, по второму свойству, , и следовательно, . |
См. также
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2
- courses.engr.illinois.edu — Lecture 14, course CS 598CSC: Combinatorial optimization
- Alexander Schrijver — Combinatorial Optimization. Polyhedra and Efficiency