Правоконтекстные грамматики, эквивалентность автоматам — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 9 промежуточных версий 5 участников) | |||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Праволинейной грамматикой''' | + | '''Праволинейной грамматикой''' (англ. ''right linear grammar'') называется [[Формальные_грамматики | грамматика]], в которой все правила имеют вид <tex> A \to a </tex>, <tex> A \to aB </tex>. |
}} | }} | ||
Строка 8: | Строка 8: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Множество языков, задаваемых праволинейными грамматиками, совпадает со множеством языков, задаваемых конечными автоматами. | + | Множество языков, задаваемых праволинейными грамматиками, совпадает со множеством языков, задаваемых [[Детерминированные_конечные_автоматы | конечными автоматами]]. |
|proof= | |proof= | ||
Пусть имеется конечный автомат. Построим для него праволинейную грамматику. Множеством нетерминалов нашей грамматики будет множество состояний автомата. Для каждой пары состояний <tex>A</tex> и <tex>B</tex> такой, что имеется переход из <tex>A</tex> в <tex>B</tex> по символу <tex>c</tex>, добавим в грамматику правило <tex> A \to cB </tex>. Затем для каждой пары состояний автомата <tex>A</tex> и <tex>B</tex> такой, что имеется переход из <tex>A</tex> в <tex>B</tex> по символу <tex>c</tex>, и <tex> B </tex> является допускающим состоянием в автомате, добавим в грамматику правило <tex> A \to c </tex>. | Пусть имеется конечный автомат. Построим для него праволинейную грамматику. Множеством нетерминалов нашей грамматики будет множество состояний автомата. Для каждой пары состояний <tex>A</tex> и <tex>B</tex> такой, что имеется переход из <tex>A</tex> в <tex>B</tex> по символу <tex>c</tex>, добавим в грамматику правило <tex> A \to cB </tex>. Затем для каждой пары состояний автомата <tex>A</tex> и <tex>B</tex> такой, что имеется переход из <tex>A</tex> в <tex>B</tex> по символу <tex>c</tex>, и <tex> B </tex> является допускающим состоянием в автомате, добавим в грамматику правило <tex> A \to c </tex>. | ||
− | Докажем, что если для автомата верно <tex>\langle S, \alpha \rangle \vdash^* \langle U, \varepsilon \rangle </tex>, то для построенной грамматики верно <tex> S \Rightarrow^* \alpha U </tex>. Будем доказывать индукцией по переходам в автомате. | + | :* Докажем, что если для автомата верно <tex>\langle S, \alpha \rangle \vdash^* \langle U, \varepsilon \rangle </tex>, то для построенной грамматики верно <tex> S \Rightarrow^* \alpha U </tex>. Будем доказывать индукцией по переходам в автомате. |
− | Базой индукции будут переходы за 0 шагов. | + | ::* Базой индукции будут переходы за <tex> 0 </tex> шагов. |
− | Индукционный переход: пусть данное свойство выполняется для переходов длины <tex>k-1</tex>. Докажем, что верно и для переходов за <tex>k</tex> шагов. | + | ::* Индукционный переход: пусть данное свойство выполняется для переходов длины <tex>k-1</tex>. Докажем, что верно и для переходов за <tex>k</tex> шагов. |
− | Рассмотрим переход <tex>\langle S, \alpha \rangle \vdash^{k} \langle U, \varepsilon \rangle </tex>, а именно его последний шаг: <tex> \langle S, \alpha \rangle \vdash^{k-1} \langle Q, c \rangle \vdash \langle U, \varepsilon \rangle </tex>. | + | ::: Рассмотрим переход <tex>\langle S, \alpha \rangle \vdash^{k} \langle U, \varepsilon \rangle </tex>, а именно его последний шаг: <tex> \langle S, \alpha \rangle \vdash^{k-1} \langle Q, c \rangle \vdash \langle U, \varepsilon \rangle </tex>. |
− | Так как для <tex>k-1</tex> шага верно, то <tex> S \Rightarrow^{k-1} \alpha c^{-1} Q </tex>, но по построению грамматики имеется правило <tex> Q \to c U</tex>, значит <tex> S \Rightarrow^{k-1} \alpha c^{-1} Q \Rightarrow \alpha c^{-1} c U = \alpha U</tex>. Таким образом, доказали для <tex>k</tex> шагов. | + | ::: Так как для <tex>k-1</tex> шага верно, то <tex> S \Rightarrow^{k-1} \alpha c^{-1} Q </tex>, но по построению грамматики имеется правило <tex> Q \to c U</tex>, значит <tex> S \Rightarrow^{k-1} \alpha c^{-1} Q \Rightarrow \alpha c^{-1} c U = \alpha U</tex>. Таким образом, доказали для <tex>k</tex> шагов. |
− | Докажем в обратную сторону, а именно из <tex> S \Rightarrow^* \alpha U </tex> следует <tex> \langle S, \alpha \rangle \vdash^* \langle U, \varepsilon \rangle </tex>. Доказательство также проведем по индукции. Индукция будет идти по количеству примененных подряд правил. | + | :* Докажем в обратную сторону, а именно из <tex> S \Rightarrow^* \alpha U </tex> следует <tex> \langle S, \alpha \rangle \vdash^* \langle U, \varepsilon \rangle </tex>. Доказательство также проведем по индукции. Индукция будет идти по количеству примененных подряд правил. |
− | Базой индукции будут строки, выводимые в грамматике из начального нетерминала <tex> S </tex> за 0 применений правил. | + | ::* Базой индукции будут строки, выводимые в грамматике из начального нетерминала <tex> S </tex> за <tex> 0 </tex> применений правил. |
− | Индукционный переход: пусть верно для <tex>k-1</tex> применения правил. Рассмотрим произвольную строку, полученную за <tex>k</tex> применений правил. Рассмотрим последнее применение правила. Если оно имело вид <tex> A \to aB </tex>, значит в автомате возможен переход <tex> \langle A,a \rangle \vdash \langle B,\varepsilon \rangle </tex>, а если <tex> A \to a </tex>, то <tex> B </tex> является допускающим в автомате. Таким образом, свойство выполняется для <tex> k </tex> последовательно примененных правил. Эквивалентность языков автомата и грамматики доказана. | + | ::* Индукционный переход: пусть верно для <tex>k-1</tex> применения правил. Рассмотрим произвольную строку, полученную за <tex>k</tex> применений правил. Рассмотрим последнее применение правила. Если оно имело вид <tex> A \to aB </tex>, значит в автомате возможен переход <tex> \langle A,a \rangle \vdash \langle B,\varepsilon \rangle </tex>, а если <tex> A \to a </tex>, то <tex> B </tex> является допускающим в автомате. Таким образом, свойство выполняется для <tex> k </tex> последовательно примененных правил. Эквивалентность языков автомата и грамматики доказана. |
Строка 30: | Строка 30: | ||
Введём специальное допускающее состояние <tex> ok </tex>. Множеством состояний автомата будет множество нетерминалов грамматики вместе с состоянием <tex> ok </tex> (<tex> Q = N \cup ok </tex>). Для правил вида <tex> A \to aB </tex> определим функцию перехода в автомате как <tex> \delta \left( A, a \right) = B </tex>. Для правил вида <tex> A \to a </tex> определим функцию перехода в автомате как <tex> \delta \left( A, a \right) = ok </tex>. | Введём специальное допускающее состояние <tex> ok </tex>. Множеством состояний автомата будет множество нетерминалов грамматики вместе с состоянием <tex> ok </tex> (<tex> Q = N \cup ok </tex>). Для правил вида <tex> A \to aB </tex> определим функцию перехода в автомате как <tex> \delta \left( A, a \right) = B </tex>. Для правил вида <tex> A \to a </tex> определим функцию перехода в автомате как <tex> \delta \left( A, a \right) = ok </tex>. | ||
− | Докажем, что если слово выводится в грамматике, то оно допускается автоматом. Рассмотрим последовательность применений правил, дающую слово <tex> \alpha </tex> длины <tex> k </tex>. Для каждого правила вида <tex> A \to aB </tex> в автомате существует переход из состояния <tex> A </tex> в состояние <tex> B</tex> по символу <tex> a </tex>. Таким образом, если после <tex> k-1 </tex> применения правил мы можем получить строку вида <tex> \alpha c^{-1}B </tex>, то в автомате имеется соответствующая последовательность переходов <tex> \langle S, \alpha \rangle \vdash^{k-1} \langle B, c \rangle </tex>, а поскольку можно вывести <tex> \alpha </tex>, то хотя бы для одной строки такого вида существует правило <tex> B \to c </tex>, а значит в автомате есть переход <tex> \langle B,c \rangle \vdash \langle ok,\varepsilon \rangle </tex>. Таким образом автомат допускает слово <tex> \alpha </tex>. | + | :* Докажем, что если слово выводится в грамматике, то оно допускается автоматом. Рассмотрим последовательность применений правил, дающую слово <tex> \alpha </tex> длины <tex> k </tex>. Для каждого правила вида <tex> A \to aB </tex> в автомате существует переход из состояния <tex> A </tex> в состояние <tex> B</tex> по символу <tex> a </tex>. Таким образом, если после <tex> k-1 </tex> применения правил мы можем получить строку вида <tex> \alpha c^{-1}B </tex>, то в автомате имеется соответствующая последовательность переходов <tex> \langle S, \alpha \rangle \vdash^{k-1} \langle B, c \rangle </tex>, а поскольку можно вывести <tex> \alpha </tex>, то хотя бы для одной строки такого вида существует правило <tex> B \to c </tex>, а значит в автомате есть переход <tex> \langle B,c \rangle \vdash \langle ok,\varepsilon \rangle </tex>. Таким образом автомат допускает слово <tex> \alpha </tex>. |
− | Докажем, что если слово допускается автоматом, то его можно вывести в грамматике. Рассмотрим слово <tex> \alpha </tex> длины <tex> k </tex>. Рассмотрим какую-либо последовательность переходов автомата, допускающую данное слово <tex> \langle S,\alpha \rangle \vdash^k \langle ok,\varepsilon \rangle </tex>. Для каждого одношагового перехода в автомате существует соответствующее правило в грамматике. Значит для подпоследовательности переходов из <tex> k-1 </tex> шага <tex> \langle S, \alpha \rangle \vdash^{k-1} \langle U,c \rangle </tex> существует соответствующая последовательность применений правил <tex> S \Rightarrow^{k-1} \alpha c^{-1} U </tex>. Для последнего перехода в автомате <tex> \langle U,c \rangle \vdash \langle ok, \varepsilon \rangle </tex> существует правило <tex> U \Rightarrow c </tex>. Таким образом, существует последовательность применений правил грамматики, выводящая слово <tex> \alpha </tex>. | + | :* Докажем, что если слово допускается автоматом, то его можно вывести в грамматике. Рассмотрим слово <tex> \alpha </tex> длины <tex> k </tex>. Рассмотрим какую-либо последовательность переходов автомата, допускающую данное слово <tex> \langle S,\alpha \rangle \vdash^k \langle ok,\varepsilon \rangle </tex>. Для каждого одношагового перехода в автомате существует соответствующее правило в грамматике. Значит для подпоследовательности переходов из <tex> k-1 </tex> шага <tex> \langle S, \alpha \rangle \vdash^{k-1} \langle U,c \rangle </tex> существует соответствующая последовательность применений правил <tex> S \Rightarrow^{k-1} \alpha c^{-1} U </tex>. Для последнего перехода в автомате <tex> \langle U,c \rangle \vdash \langle ok, \varepsilon \rangle </tex> существует правило <tex> U \Rightarrow c </tex>. Таким образом, существует последовательность применений правил грамматики, выводящая слово <tex> \alpha </tex>. |
+ | }} | ||
+ | ==См. также== | ||
+ | * [[Разрешимые_(рекурсивные)_языки|Разрешимые (рекурсивные) языки]] | ||
+ | *[[Иерархия Хомского формальных грамматик]] | ||
+ | * [[Возможность_порождения_формальной_грамматикой_произвольного_перечислимого_языка|Возможность порождения формальной грамматикой произвольного перечислимого языка]] | ||
− | + | == Источники информации == | |
− | + | * ''Michael A. Harrison'' Introduction to Formal Language Theory. — Addison-Wesley, 1978. — ISBN 978-0201029550. (с 19-20, 60-63.) | |
− | }} | + | * [[wikipedia:en:Linear grammar#Relationship with regular grammars|Wikipedia {{---}} Linear grammar]] |
− | + | [[Категория: Теория формальных языков]] | |
− | + | [[Категория: Контекстно-свободные грамматики]] | |
+ | [[Категория: Базовые понятия о грамматиках]] |
Текущая версия на 19:03, 4 сентября 2022
Определение: |
Праволинейной грамматикой (англ. right linear grammar) называется грамматика, в которой все правила имеют вид , . |
Аналогично можно определить леволинейные грамматики.
Теорема: |
Множество языков, задаваемых праволинейными грамматиками, совпадает со множеством языков, задаваемых конечными автоматами. |
Доказательство: |
Пусть имеется конечный автомат. Построим для него праволинейную грамматику. Множеством нетерминалов нашей грамматики будет множество состояний автомата. Для каждой пары состояний и такой, что имеется переход из в по символу , добавим в грамматику правило . Затем для каждой пары состояний автомата и такой, что имеется переход из в по символу , и является допускающим состоянием в автомате, добавим в грамматику правило .
|
См. также
- Разрешимые (рекурсивные) языки
- Иерархия Хомского формальных грамматик
- Возможность порождения формальной грамматикой произвольного перечислимого языка
Источники информации
- Michael A. Harrison Introduction to Formal Language Theory. — Addison-Wesley, 1978. — ISBN 978-0201029550. (с 19-20, 60-63.)
- Wikipedia — Linear grammar