|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| {{В разработке}} | | {{В разработке}} |
| {{TODO|t=Этой темы, видимо, не будет на экзамене, так что забить на неё}} | | {{TODO|t=Этой темы, видимо, не будет на экзамене, так что забить на неё}} |
Текущая версия на 19:03, 4 сентября 2022
Эта статья находится в разработке!
TODO: Этой темы, видимо, не будет на экзамене, так что забить на неё
E \in \mathbb R^n, f — суммируемая функция на E, \int\limits_E |f| d \lambda_n < + \infty.
По определению суммируемой функции мы можем подобрать g — ограниченную и суммируемую на E таким образом, что:
\int\limits_E |f - g| d \lambda_n < \varepsilon
|g(x)| \le M на E.
По теореме Лузина имея \varepsilon мы можем подобрать неперывную на \mathbb R^n функцию \varphi, которая ограничена |\varphi(x)| \le M и \lambda_n E(g \ne \varphi) < \frac{\varepsilon}{M}.
Тогда \int\limits_E |f - \varphi| \le \int\limits_E |f - g| + \int\limits_E |g - \varphi| \le \varepsilon + \int\limits_E |g - \varphi|
\int\limits_E |g - \varphi| = \int\limits_{E(\varphi \ne g)} |g - \varphi| \le \int\limits_{E(\varphi \ne g)} (|g| + |\varphi|) \le