Сортировка кучей — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показано 49 промежуточных версий 9 участников)
Строка 1: Строка 1:
'''Сортировка кучей''', '''пирамидальная сортировка''' (англ. '''Heapsort''') {{---}} алгоритм сортировки, использующий структуру данных [[Двоичная куча|двоичная куча]]. Это нестабильный алгоритм сортировки с временем работы <tex>O(n\log{n})</tex> , где <tex>n</tex> {{---}} количество элементов для сортировки, и использующий <tex>O(1)</tex> дополнительной памяти.
+
'''Сортировка кучей''', '''пирамидальная сортировка''' (англ. ''Heapsort'') {{---}} алгоритм сортировки, использующий структуру данных [[Двоичная куча|двоичная куча]]. Это неустойчивый алгоритм сортировки с временем работы <tex>O(n\log{n})</tex> , где <tex>n</tex> {{---}} количество элементов для сортировки, и использующий <tex>O(1)</tex> дополнительной памяти.
  
 
== Алгоритм ==
 
== Алгоритм ==
Необходимо отсортировать массив <tex>A</tex>, размером <tex>n</tex>. Построим на базе этого массива за <tex>O(n)</tex> невозрастающую кучу. Так как по свойству кучи максимальный элемент находится в корне, то, поменявшись его местами с <tex>A[n - 1]</tex>, он встанет на свое место. Далее вызовем процедуру '''sift_down(0)''', предварительно уменьшив <tex>heap\_size</tex> на <tex>1</tex>. Она за <tex>O(\log{n})</tex> просеет <tex>A[0]</tex> на нужное место и сформирует новую кучу (так как мы уменьшили ее размер, то куча располагается с <tex>A[0]</tex> по <tex>A[n - 2]</tex>, а элемент <tex>A[n-1]</tex> находится на своем месте). Повторим эту процедуру для новой кучи, только корень будет менять местами не с <tex>A[n - 1]</tex>, а с <tex>A[n-2]</tex>. Делая аналогичные действия, пока <tex>heap\_size</tex> не станет равен <tex>1</tex>, мы будем ставить наибольшее из оставшихся чисел в конец не отсортированной части. Очевидно, что таким образом, мы получим отсортированный массив.
+
Необходимо отсортировать массив <tex>A</tex>, размером <tex>n</tex>. Построим на базе этого массива за <tex>O(n)</tex> кучу для максимума. Так как максимальный элемент находится в корне, то если поменять его местами с <tex>A[n - 1]</tex>, он встанет на своё место. Далее вызовем процедуру <tex> \mathrm{siftDown(0)} </tex>, предварительно уменьшив <tex> \mathrm{heapSize} </tex> на <tex>1</tex>. Она за <tex>O(\log{n})</tex> просеет <tex>A[0]</tex> на нужное место и сформирует новую кучу (так как мы уменьшили её размер, то куча располагается с <tex>A[0]</tex> по <tex>A[n - 2]</tex>, а элемент <tex>A[n-1]</tex> находится на своём месте). Повторим эту процедуру для новой кучи, только корень будет менять местами не с <tex>A[n - 1]</tex>, а с <tex>A[n-2]</tex>. Делая аналогичные действия, пока <tex> \mathrm{heapSize}  </tex> не станет равен <tex>1</tex>, мы будем ставить наибольшее из оставшихся чисел в конец не отсортированной части. Очевидно, что таким образом, мы получим отсортированный массив.
  
 
== Реализация ==
 
== Реализация ==
<tex>A</tex> {{---}} массив, который необходимо отсортировать; <tex>n</tex> {{---}} количество элементов в нем; '''build_heap(A)''' - процедура, которая строит из передаваемого массива невозрастающую кучу в этом же массиве; '''sift_down(A, i, len)''' {{---}} процедура, которая просеивает вниз элемент <tex>A[i]</tex> в куче из <tex>len</tex> элементов, находящихся в начале массива <tex>A</tex>.
+
*<tex>\mathrm{A}</tex> {{---}} массив, который необходимо отсортировать
<pre>
+
*<tex>\mathrm{n}</tex> {{---}} количество элементов в нём
heapsort(A)
+
*<tex> \mathrm{buildHeap(A)} </tex> {{---}} процедура, которая строит из передаваемого массива кучу для максимума в этом же массиве
  build_heap(A);
+
*<tex> \mathrm{siftDown(A, i, len)} </tex> {{---}} процедура, которая просеивает вниз элемент <tex> \mathrm{A[i]} </tex> в куче из <tex> \mathrm{len} </tex> элементов, находящихся в начале массива <tex> \mathrm{A} </tex>
  heap_size = A.size;
+
  '''fun''' heapSort(A : '''list <T>'''):
  for i = 0 to n - 2
+
    buildHeap(A)
    swap(A[0], A[n - 1 - i]);
+
    heapSize = A.size
    heap_size--;
+
    '''for''' i = 0 '''to''' n - 1
    sift_down(A, 0, heap_size);
+
      swap(A[0], A[n - 1 - i])
</pre>
+
      heapSize--
 +
      siftDown(A, 0, heapSize)
  
 
== Сложность ==
 
== Сложность ==
Операция '''sift_down''' работает за <tex>O(\log{n})</tex>. Всего цикл выполняется <tex>(n - 1)</tex> раз. Таким образом сложность сортировки кучей является <tex>O(n\log{n})</tex>.
+
Операция <tex> \mathrm{siftDown} </tex> работает за <tex>O(\log{n})</tex>. Всего цикл выполняется <tex>(n - 1)</tex> раз. Таким образом сложность сортировки кучей является <tex>O(n\log{n})</tex>.
  
 +
Достоинства:
 +
* худшее время работы {{---}} <tex>O(n\log{n})</tex>,
 +
* требует <tex>O(1)</tex> дополнительной памяти.
 +
Недостатки:
 +
* неустойчивая,
 +
* на почти отсортированных данных работает столь же долго, как и на хаотических данных.
  
 
== Пример ==
 
== Пример ==
Строка 24: Строка 31:
 
{|align="right"
 
{|align="right"
 
  |-valign="top"
 
  |-valign="top"
  |[[Файл:Документ1.png|120px|thumb|Строим кучу]]
+
  |[[Файл:heap1.png|155px|thumb|Строим кучу]]
  |[[Файл:Документ2.png|120px|thumb|Первый проход]]
+
  |[[Файл:heap2.png|155px|thumb|Первый проход]]
  |[[Файл:Документ3.png|120px|thumb|Строим новую кучу]]
+
  |[[Файл:heap3.png|155px|thumb|Строим новую кучу]]
 
  |-
 
  |-
  |[[Файл:Документ4.png|120px|thumb|Второй проход]]
+
  |[[Файл:heap4.png|155px|thumb|Второй проход]]
  |[[Файл:Документ5.png|120px|thumb|Третий проход]]
+
  |[[Файл:heap5.png|155px|thumb|Третий проход]]
  |[[Файл:Документ6.png|120px|thumb|Четвертый проход]]
+
  |[[Файл:heap6.png|155px|thumb|Четвёртый проход]]
 
  |}
 
  |}
  
Строка 48: Строка 55:
 
|-
 
|-
 
|style="background-color:#FFF;padding:2px 10px"| '''4''' 3 2 1 5
 
|style="background-color:#FFF;padding:2px 10px"| '''4''' 3 2 1 5
|style="background-color:#FFF;padding:2px 10px"| Строим кучу из первых четырех элементов
+
|style="background-color:#FFF;padding:2px 10px"| Строим кучу из первых четырёх элементов
 
|-
 
|-
 
|colspan=3|''Второй проход''
 
|colspan=3|''Второй проход''
 
|-
 
|-
 
|style="background-color:#FFF;padding:2px 10px"| '''1''' 3 2 '''4''' 5
 
|style="background-color:#FFF;padding:2px 10px"| '''1''' 3 2 '''4''' 5
|style="background-color:#FFF;padding:2px 10px"| Меняем местами первый и четвертый элементы  
+
|style="background-color:#FFF;padding:2px 10px"| Меняем местами первый и четвёртый элементы  
 
|-
 
|-
 
|style="background-color:#FFF;padding:2px 10px"| '''3''' 1 2 4 5
 
|style="background-color:#FFF;padding:2px 10px"| '''3''' 1 2 4 5
|style="background-color:#FFF;padding:2px 10px"| Строим кучу из первых трех элементов
+
|style="background-color:#FFF;padding:2px 10px"| Строим кучу из первых трёх элементов
 
|-
 
|-
 
|colspan=3|''Третий проход''
 
|colspan=3|''Третий проход''
Строка 66: Строка 73:
 
|style="background-color:#FFF;padding:2px 10px"| Строим кучу из двух элементов
 
|style="background-color:#FFF;padding:2px 10px"| Строим кучу из двух элементов
 
|-
 
|-
|colspan=3|''Четвертый проход''
+
|colspan=3|''Четвёртый проход''
 
|-
 
|-
 
|style="background-color:#FFF;padding:2px 10px"| '''1''' '''2''' 3 4 5
 
|style="background-color:#FFF;padding:2px 10px"| '''1''' '''2''' 3 4 5
Строка 76: Строка 83:
  
  
== Ссылки ==
 
*[http://ru.wikipedia.org/wiki/%D0%9F%D0%B8%D1%80%D0%B0%D0%BC%D0%B8%D0%B4%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%81%D0%BE%D1%80%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B0 Пирамидальная сортировка - Википедия]
 
*[http://en.wikipedia.org/wiki/Heapsort Heapsort - Wikipedia]
 
  
== Литература ==
 
*''Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К.'' Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4
 
  
 +
= JSort =
 +
'''JSort''' является модификацией сортировки кучей, которую придумал Джейсон Моррисон (''Jason Morrison'').
 +
Алгоритм частично упорядочивает массив, строя на нём два раза кучу: один раз передвигая меньшие элементы влево, второй раз передвигая большие элементы вправо. Затем к массиву применяется
 +
[[Сортировка вставками|сортировка вставками]], которая при почти отсортированных данных работает за <tex>O(n)</tex>.
 +
 +
Достоинства:
 +
*В отличие от сортировки кучей, на почти отсортированных массивах работает быстрее, чем на случайных.
 +
*В силу использования сортировки вставками, которая просматривает элементы последовательно, использование кэша гораздо эффективнее.
 +
Недостатки:
 +
*На длинных массивах, возникают плохо отсортированные последовательности в середине массива, что приводит к ухудшению работы сортировки вставками.
 +
 +
=== Алгоритм ===
 +
Построим кучу для минимума на этом массиве.
 +
Тогда наименьший элемент окажется на первой позиции, а левая часть массива окажется почти отсортированной, так как ей будут соответствовать верхние узлы кучи.
 +
Теперь построим на этом же массиве кучу так, чтобы немного упорядочить правую часть массива. Эта куча должна быть кучей для максимума и быть "зеркальной" к массиву, то есть чтобы её корень соответствовал последнему элементу массива.
 +
К получившемуся массиву применим сортировку вставками.
 +
 +
=== Сложность ===
 +
 +
Построение кучи занимает <tex>O(n)</tex>. Почти упорядоченный массив сортировка вставками может отсортировать <tex> O(n)</tex>, но в худшем случае за <tex>O(n^2)</tex>.
 +
 +
Таким образом, наихудшая оценка Jsort {{---}} <tex>O(n^2)</tex>.
 +
 +
=== Пример ===
 +
Рассмотрим, массив <tex> A </tex> = <tex> [1, 2, 8, 15, 17, 20, 31, 32, 30, 2, 3, 5, 10, 11, 24 ] </tex>
 +
 +
Построим на этом массиве кучу для минимума:
 +
{| cellpadding="3" style="margin-left: left; margin-right: left;"
 +
| [[Файл:HeapW.png|400px]]
 +
|}
 +
Массив выглядит следующим образом:
 +
{| cellpadding="3" style="margin-left: left; margin-right: left;"
 +
| [[Файл:HeapM.png|400px]]
 +
|}
 +
Заметим, что начало почти упорядочено, что хорошо скажется на использовании сортировки вставками.
 +
 +
Построим теперь зеркальную кучу для максимума на этом же массиве.
 +
{| cellpadding="3" style="margin-left: left; margin-right: left;"
 +
| [[Файл:HeapWU.png|400px]]
 +
|}
 +
Массив будет выглядеть следующим образом:
 +
{| cellpadding="3" style="margin-left: left; margin-right: left;"
 +
| [[Файл:HeapMU.png|400px]]
 +
|}
 +
Теперь и конец массива выглядит упорядоченным, применим сортировку вставками и получим отсортированный массив.
 +
 +
== См. также ==
 +
* [[Сортировка слиянием]]
 +
* [[Быстрая сортировка]]
 +
* [[Теорема о нижней оценке для сортировки сравнениями]]
 +
 +
== Источники информации ==
 +
* Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4
 +
*[http://en.wikipedia.org/wiki/Heapsort Wikipedia {{---}} Heapsort]
 +
*[http://en.wikipedia.org/wiki/JSort  Wikipedia {{---}} JSort]
 +
*[http://habrahabr.ru/post/221095/ Хабрахабр {{---}} Описание сортировки кучей и JSort]
 +
*[https://ru.wikipedia.org/wiki/Пирамидальная_сортировка Википедия {{---}} Пирамидальная сортировка]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Сортировки]]
 
[[Категория: Сортировки]]

Текущая версия на 19:03, 4 сентября 2022

Сортировка кучей, пирамидальная сортировка (англ. Heapsort) — алгоритм сортировки, использующий структуру данных двоичная куча. Это неустойчивый алгоритм сортировки с временем работы [math]O(n\log{n})[/math] , где [math]n[/math] — количество элементов для сортировки, и использующий [math]O(1)[/math] дополнительной памяти.

Алгоритм

Необходимо отсортировать массив [math]A[/math], размером [math]n[/math]. Построим на базе этого массива за [math]O(n)[/math] кучу для максимума. Так как максимальный элемент находится в корне, то если поменять его местами с [math]A[n - 1][/math], он встанет на своё место. Далее вызовем процедуру [math] \mathrm{siftDown(0)} [/math], предварительно уменьшив [math] \mathrm{heapSize} [/math] на [math]1[/math]. Она за [math]O(\log{n})[/math] просеет [math]A[0][/math] на нужное место и сформирует новую кучу (так как мы уменьшили её размер, то куча располагается с [math]A[0][/math] по [math]A[n - 2][/math], а элемент [math]A[n-1][/math] находится на своём месте). Повторим эту процедуру для новой кучи, только корень будет менять местами не с [math]A[n - 1][/math], а с [math]A[n-2][/math]. Делая аналогичные действия, пока [math] \mathrm{heapSize} [/math] не станет равен [math]1[/math], мы будем ставить наибольшее из оставшихся чисел в конец не отсортированной части. Очевидно, что таким образом, мы получим отсортированный массив.

Реализация

  • [math]\mathrm{A}[/math] — массив, который необходимо отсортировать
  • [math]\mathrm{n}[/math] — количество элементов в нём
  • [math] \mathrm{buildHeap(A)} [/math] — процедура, которая строит из передаваемого массива кучу для максимума в этом же массиве
  • [math] \mathrm{siftDown(A, i, len)} [/math] — процедура, которая просеивает вниз элемент [math] \mathrm{A[i]} [/math] в куче из [math] \mathrm{len} [/math] элементов, находящихся в начале массива [math] \mathrm{A} [/math]
 fun heapSort(A : list <T>):
   buildHeap(A)
   heapSize = A.size
   for i = 0 to n - 1
     swap(A[0], A[n - 1 - i])
     heapSize--
     siftDown(A, 0, heapSize)

Сложность

Операция [math] \mathrm{siftDown} [/math] работает за [math]O(\log{n})[/math]. Всего цикл выполняется [math](n - 1)[/math] раз. Таким образом сложность сортировки кучей является [math]O(n\log{n})[/math].

Достоинства:

  • худшее время работы — [math]O(n\log{n})[/math],
  • требует [math]O(1)[/math] дополнительной памяти.

Недостатки:

  • неустойчивая,
  • на почти отсортированных данных работает столь же долго, как и на хаотических данных.

Пример

Строим кучу
Первый проход
Строим новую кучу
Второй проход
Третий проход
Четвёртый проход

Пусть дана последовательность из [math]5[/math] элементов [math]3, 2, 4, 1, 5[/math].

Массив Описание шага
5 3 4 1 2 Строим кучу из исходного массива
Первый проход
2 3 4 1 5 Меняем местами первый и последний элементы
4 3 2 1 5 Строим кучу из первых четырёх элементов
Второй проход
1 3 2 4 5 Меняем местами первый и четвёртый элементы
3 1 2 4 5 Строим кучу из первых трёх элементов
Третий проход
2 1 3 4 5 Меняем местами первый и третий элементы
2 1 3 4 5 Строим кучу из двух элементов
Четвёртый проход
1 2 3 4 5 Меняем местами первый и второй элементы
1 2 3 4 5 Массив отсортирован



JSort

JSort является модификацией сортировки кучей, которую придумал Джейсон Моррисон (Jason Morrison). Алгоритм частично упорядочивает массив, строя на нём два раза кучу: один раз передвигая меньшие элементы влево, второй раз передвигая большие элементы вправо. Затем к массиву применяется сортировка вставками, которая при почти отсортированных данных работает за [math]O(n)[/math].

Достоинства:

  • В отличие от сортировки кучей, на почти отсортированных массивах работает быстрее, чем на случайных.
  • В силу использования сортировки вставками, которая просматривает элементы последовательно, использование кэша гораздо эффективнее.

Недостатки:

  • На длинных массивах, возникают плохо отсортированные последовательности в середине массива, что приводит к ухудшению работы сортировки вставками.

Алгоритм

Построим кучу для минимума на этом массиве. Тогда наименьший элемент окажется на первой позиции, а левая часть массива окажется почти отсортированной, так как ей будут соответствовать верхние узлы кучи. Теперь построим на этом же массиве кучу так, чтобы немного упорядочить правую часть массива. Эта куча должна быть кучей для максимума и быть "зеркальной" к массиву, то есть чтобы её корень соответствовал последнему элементу массива. К получившемуся массиву применим сортировку вставками.

Сложность

Построение кучи занимает [math]O(n)[/math]. Почти упорядоченный массив сортировка вставками может отсортировать [math] O(n)[/math], но в худшем случае за [math]O(n^2)[/math].

Таким образом, наихудшая оценка Jsort — [math]O(n^2)[/math].

Пример

Рассмотрим, массив [math] A [/math] = [math] [1, 2, 8, 15, 17, 20, 31, 32, 30, 2, 3, 5, 10, 11, 24 ] [/math]

Построим на этом массиве кучу для минимума:

HeapW.png

Массив выглядит следующим образом:

HeapM.png

Заметим, что начало почти упорядочено, что хорошо скажется на использовании сортировки вставками.

Построим теперь зеркальную кучу для максимума на этом же массиве.

HeapWU.png

Массив будет выглядеть следующим образом:

HeapMU.png

Теперь и конец массива выглядит упорядоченным, применим сортировку вставками и получим отсортированный массив.

См. также

Источники информации