1outtreesumwc — различия между версиями
Qradimir (обсуждение | вклад) (Добавлен раздел про intree расписание) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 4 промежуточные версии 4 участников) | |||
Строка 82: | Строка 82: | ||
L = {1, ... , n} | L = {1, ... , n} | ||
'''while''' L <tex> \ne </tex> {root} <font color=darkgreen>// пока в списке работ не останется только корень</font> | '''while''' L <tex> \ne </tex> {root} <font color=darkgreen>// пока в списке работ не останется только корень</font> | ||
− | Найти работу j <tex> \in </tex> L с | + | Найти работу j <tex> \in </tex> L с максимальным значением q[j] |
par = P[j] | par = P[j] | ||
Найти i, что par <tex> \in </tex> J[i] | Найти i, что par <tex> \in </tex> J[i] | ||
Строка 102: | Строка 102: | ||
[[Файл:JobsOuttrees.jpg|650px]] | [[Файл:JobsOuttrees.jpg|650px]] | ||
− | Первой выберется работа с номером <tex> 5 </tex>. Она | + | Первой выберется работа с номером <tex> 5 </tex>. Она объединится со своим родителем <tex> 2 </tex> и допишется в конец <tex> \pi_2 </tex>. Потом выберется работа <tex> 4 </tex>, потом <tex> \{2, 5\} </tex> и т. д. Процесс будет продолжаться, пока не останется одна вершина. Ответ {{---}} оптимальная последовательность работ {{---}} содержится в <tex> \pi_1 </tex>, который написан внутри последней вершины. |
== Доказательство оптимальности алгоритма == | == Доказательство оптимальности алгоритма == | ||
Строка 130: | Строка 130: | ||
}} | }} | ||
− | == | + | == 1 | intree | Sum(w*C)== |
+ | <tex dpi="200"> 1 \mid intree \mid \sum w_i C_i </tex> | ||
+ | {{Задача | ||
+ | |definition= | ||
+ | Необходимо составить расписание на одном станке работ с произвольными временами выполнения. Минимизировать нужно взвешенную сумму времен завершения работ. Зависимости между работами заданы [[Дерево, эквивалентные определения | деревом]], в котором листья {{---}} работы, которые доступны в начале, а все остальные работы недоступны пока все их дети не будут выполнены. | ||
+ | }} | ||
Сведем задачу <tex> S_{in} = 1 \mid intree \mid \sum w_i C_i </tex> к решенной задаче <tex>S_{out} = 1 \mid outtree \mid \sum w_i C_i </tex> следующим образом: | Сведем задачу <tex> S_{in} = 1 \mid intree \mid \sum w_i C_i </tex> к решенной задаче <tex>S_{out} = 1 \mid outtree \mid \sum w_i C_i </tex> следующим образом: | ||
− | + | # Развернем все ребра: если работа <tex> i </tex> зависела от работы <tex> j </tex>, теперь работа <tex> j </tex> будет зависеть от <tex> i </tex>. | |
− | + | # Заменим все стоимости <tex> w_i </tex> на противоположные <tex> w'_i = - w_i</tex>. | |
− | {{ | + | {{Теорема |
|statement=Развернутое оптимальное расписание соответствующей задачи <tex> S_{out} </tex> с весами <tex> w'_i </tex> является оптимальным расписанием для задачи <tex> S_{in} </tex> | |statement=Развернутое оптимальное расписание соответствующей задачи <tex> S_{out} </tex> с весами <tex> w'_i </tex> является оптимальным расписанием для задачи <tex> S_{in} </tex> | ||
|proof= | |proof= | ||
− | Полученное расписание будет допустимым, так как расписание для <tex> S_{out} </tex> было допустимым, и в нем никакие две работы не пересекались и не прерывались. Развернув, мы не могли нарушить это свойство. Также из-за того, что мы развернули | + | Полученное расписание будет допустимым, так как расписание для <tex> S_{out} </tex> было допустимым, и в нем никакие две работы не пересекались и не прерывались. Развернув ребра, мы не могли нарушить это свойство. Также из-за того, что мы развернули ребра в расписании, мы добились того, что все работы выполняются в правильном порядке (в расписании для <tex> S_{out} </tex> из-за того, что все ребра были развернуты, порядок был нарушен для всех работ). Таким образом получили, что расписание допустимое. |
Пусть с помощью задачи <tex> S_{out} </tex> мы получили последовательность работ <tex> 1 \dots n </tex>. Распишем по определению значение целевой функции для <tex> S_{out} </tex>: | Пусть с помощью задачи <tex> S_{out} </tex> мы получили последовательность работ <tex> 1 \dots n </tex>. Распишем по определению значение целевой функции для <tex> S_{out} </tex>: | ||
− | <tex>\sum -w_i C_i = \sum \limits_{i=1}^n ( -w_i \sum \limits_{j=1}^i p_j ) = \\ | + | <tex> |
− | \sum\limits_{i=1}^n ( w_i \sum\limits_{j=i+1}^n p_j ) - \sum\limits_{i=1}^n w_i \sum \limits_{i=1}^n p_i = \\ | + | \sum\limits_{i=1}^n \left( -w_i C_i \right) |
− | \sum\limits_{i=1}^n ( w_i \sum\limits_{j=i}^n p_j ) - \sum\limits_{i=1}^n w_i p_i - \sum\limits_{i=1}^n w_i \sum \limits_{i=1}^n p_i </tex> | + | = \sum \limits_{i=1}^n \left( -w_i \sum \limits_{j=1}^i p_j \right) = \\ |
+ | = \sum\limits_{i=1}^n \left( w_i \sum\limits_{j=i+1}^n p_j \right) | ||
+ | - \sum\limits_{i=1}^n w_i \sum \limits_{i=1}^n p_i = \\ | ||
+ | = \sum\limits_{i=1}^n \left( w_i \sum\limits_{j=i}^n p_j \right) | ||
+ | - \sum\limits_{i=1}^n w_i p_i | ||
+ | - \sum\limits_{i=1}^n w_i \sum \limits_{i=1}^n p_i | ||
+ | </tex> | ||
Заметим, что первое слагаемое соответствует целевой функции <tex> \sum w_i C_i </tex> для последовательности <tex> n \dots 1 </tex>, а второе и третье слагаемые — константы, зависящие только от входных данных и не зависящие от перестановки работ. Таким образом, оптимальное значение для <tex> S_{out} </tex> также минимизирует <tex> S_{in} </tex>. | Заметим, что первое слагаемое соответствует целевой функции <tex> \sum w_i C_i </tex> для последовательности <tex> n \dots 1 </tex>, а второе и третье слагаемые — константы, зависящие только от входных данных и не зависящие от перестановки работ. Таким образом, оптимальное значение для <tex> S_{out} </tex> также минимизирует <tex> S_{in} </tex>. | ||
}} | }} | ||
+ | |||
== Источники информации == | == Источники информации == | ||
* P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 73 - 78 | * P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 73 - 78 | ||
− | [[Категория: | + | [[Категория: Алгоритмы и структуры данных]] |
[[Категория: Теория расписаний]] | [[Категория: Теория расписаний]] |
Текущая версия на 19:03, 4 сентября 2022
Задача: |
Необходимо составить расписание на одном станке работ с произвольными временами выполнения. Минимизировать нужно взвешенную сумму времен завершения работ. Зависимости между работами заданы исходящим деревом — работа, которая соответствует корню, доступна в начале, все другие работы зависят от одной работы — отца в дереве. |
Тривиальным примером подобной задачи является демонтаж сложного механизма.
Содержание
Свойства оптимального расписания
Докажем некоторые свойства оптимального расписания, которые мы будем использовать в доказательстве корректности алгоритма.
Введем некоторые обозначения для удобства. За
обозначим список всех ребёр дерева. Для всех работ обозначим за всех потомков в дереве зависимостей, включая саму работу , введём новый параметр работы .Для подмножества работ
определим:
Два непересекающихся множества работ
будем называть параллельными , если для всех выполняется: не является ни предком, ни потомком . Если множества состоят из одной работы , будем писать . Каждое расписание представлено перестановкой .Лемма: |
Пусть — оптимальное расписание, и — два таких параллельных блока (множества работ, выполняемых последовательно) из , что выполняется сразу после . Пусть — расписание, полученное из перестановкой и . Тогда выполяются следующие пункты:
|
Доказательство: |
|
Теорема: |
Пусть работы такие, что — предок , и . Тогда существует оптимальное расписание, в котором работа идёт сразу после работы |
Доказательство: |
Каждое расписание может быть представлено последовательностью работ в порядке, в котором они выполняются. Пусть будет оптимальной такой последовательностью. Также предположим, что количество работ между и равное было бы минимальным. Можно считать, что . Тогда расписание можно представить следующим образом:Рассмотрим случая.Случай 1:
Случай 2:
|
Алгоритм
Доказанная в предыдущем пункте теорема уже даёт основную идею алгоритма: взять работу , отличную от корня дерева, с максимальным значением и поставить её в расписании сразу после своего непосредственного предка . Так как существует оптимальное расписание, в котором работа идёт сразу после , то мы можем объедить вершины графа в одну вершину , которая представляет собой последовательность . Все сыновья работы станут сыновьями новой вершины .
Будем повторять процесс слияния вершин, пока не останется всего одна вершина.
Таким образом каждая вершина
представляется множеством работ и соответствующей этому множеству последовательностью . На очередном шаге алгоритма мы находим вершину , отличную от корня, с максимальным значением . Пусть — непосредственный предок работы . Тогда нам надо найти такую вершину , что . После этого мы объединяем обе вершины, заменяя и на и , где — это конкатенация последовательностей и .Детали описаны в алгоритме ниже, в котором
- обозначает последнюю работу в последовательности ,
- обозначает предка в графе зависимостей, а после слияния с какой-то вершиной — предыдущую работу в последовательности .
w[root] =for i = 1..n E[i] = {i} J[i] = {i} q[i] = w[i] \ p[i] L = {1, ... , n} while L {root} // пока в списке работ не останется только корень Найти работу j L с максимальным значением q[j] par = P[j] Найти i, что par J[i] w[i] += w[j] p[i] += p[j] q[i] = w[i] / w[j] // пересчитаем значения в вершине P[j] = E[i] // предком работы j теперь будет последняя работа в E[i] = E[j] // последней работой в теперь будет последняя работа в J[i] = J[i] J[j] L = L \ {j}
Вначале делаем присваивание
, чтобы корень никогда не выбрался на шаге выбора вершины с максимальным значением . В реализации же можно просто дополнительно проверять на равенство с корнем, чтобы избежать переполнений или испортить значение .После завершения этой процедуры оптимальное расписание можно восстановить с конца, зная
и массив .Если для получения работы
с минимальным значением использовать очередь с приоритетами, а для поиска родителям вершины использовать систему непересекающихся множеств, то время работы алгоритма будет .Проиллюстрируем работу алгоритма на следующем примере.
Первой выберется работа с номером
. Она объединится со своим родителем и допишется в конец . Потом выберется работа , потом и т. д. Процесс будет продолжаться, пока не останется одна вершина. Ответ — оптимальная последовательность работ — содержится в , который написан внутри последней вершины.Доказательство оптимальности алгоритма
Теорема: |
Алгоритм строит оптимальное расписание. |
Доказательство: |
Доказательство проведём по индукции. Очевидно, что для одной вершины алгоритм построит оптимальное расписание. Пусть теперь он может составить оптимальную последовательность назначенных работ числом меньше . Пусть также работы — работы, которые объединятся на первом шаге алгоритма. Тогда оптимальное расписание можно представить следующим образом:
После объединения работ и в одну расписание примет такой вид:
где . Обозначим за целевые функции для последовательностей и соответственно. Тогда
Следовательно, расписание будет оптимальным тогда и только тогда, когда расписание будет оптимальным. А по предположению индукции наш алгоритм составит оптимальное расписание для последовательности .Теперь разделим обе части равенства на . Получим, что расстояние между целевыми функциями равноЭто расстояние минимально (по модулю), так как мы выбирали работу с максимальным значением . Из этих утверждений и следует оптимальность построенного алгоритмом расписания. |
1 | intree | Sum(w*C)
Задача: |
Необходимо составить расписание на одном станке работ с произвольными временами выполнения. Минимизировать нужно взвешенную сумму времен завершения работ. Зависимости между работами заданы деревом, в котором листья — работы, которые доступны в начале, а все остальные работы недоступны пока все их дети не будут выполнены. |
Сведем задачу
к решенной задаче следующим образом:- Развернем все ребра: если работа зависела от работы , теперь работа будет зависеть от .
- Заменим все стоимости на противоположные .
Теорема: |
Развернутое оптимальное расписание соответствующей задачи с весами является оптимальным расписанием для задачи |
Доказательство: |
Полученное расписание будет допустимым, так как расписание для было допустимым, и в нем никакие две работы не пересекались и не прерывались. Развернув ребра, мы не могли нарушить это свойство. Также из-за того, что мы развернули ребра в расписании, мы добились того, что все работы выполняются в правильном порядке (в расписании для из-за того, что все ребра были развернуты, порядок был нарушен для всех работ). Таким образом получили, что расписание допустимое.Пусть с помощью задачи Заметим, что первое слагаемое соответствует целевой функции мы получили последовательность работ . Распишем по определению значение целевой функции для : для последовательности , а второе и третье слагаемые — константы, зависящие только от входных данных и не зависящие от перестановки работ. Таким образом, оптимальное значение для также минимизирует . |
Источники информации
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 73 - 78