Конечная группа — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показаны 24 промежуточные версии 4 участников) | |||
Строка 1: | Строка 1: | ||
− | |||
− | |||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
Строка 8: | Строка 4: | ||
}} | }} | ||
+ | == Таблицы умножения для конечных групп == | ||
− | + | Таблица умножения (таблица Кэли) — таблица, которая описывает структуру конечных алгебраических систем с одной бинарной операцией. Таблица позволяет определить, является ли группа абелевой, найти ядро группы и обратные элементы по отношению к другим элементам в этой группе. | |
− | + | === Структура === | |
+ | Пусть <tex>\mathbb{A}_n = \{a_1,a_2,\dots,a_n\}</tex> — группа из <tex>n</tex> элементов. | ||
− | + | Тогда таблица будет выглядеть следующим образом: | |
− | |||
− | |||
− | |||
− | |||
− | Тогда таблица будет выглядеть следующим | ||
{| border="2" cellpadding="8" align="center" | {| border="2" cellpadding="8" align="center" | ||
!style="background:#efefef;"| * | !style="background:#efefef;"| * | ||
Строка 39: | Строка 32: | ||
|} | |} | ||
− | + | === Свойства === | |
− | + | {{Утверждение | |
− | + | |statement=Каждая строка или столбец являются перестановкой элементов группы. | |
+ | |proof=Пусть <tex>a,b,c,d \in G</tex>. Тогда <tex>ab=d</tex> и <tex>ac=d \Rightarrow b=c</tex>. Так как количество клеток в строке равно количеству элементов, то, по принципу Дирихле, каждый элемент группы встречается в строке один раз. | ||
+ | }} | ||
+ | {{Утверждение | ||
+ | |statement=Если таблица симметрична относительно главной диагонали, то операция умножения коммутативна. | ||
+ | |proof=Таблица симметрична <tex>\Rightarrow ab = ba</tex> для любых <tex>a,b \in G</tex> | ||
+ | }} | ||
+ | {{Утверждение | ||
+ | |statement=В конечной группе порядок каждого элемента является делителем порядка группы. | ||
+ | |proof= | ||
+ | Рассмотрим элемент <tex>x\in G</tex> c порядком <tex>n</tex> и подмножество <tex>\langle x\rangle=\lbrace e,\,x,\,x^2,\,...,x^{n-1}\rbrace</tex> (все <tex>x^k</tex> различны при <tex>k<n</tex> — в противном случае при <tex>x^k=x^m (m<k<n)\Rightarrow x^{k—m}=e</tex>, т.е. <tex>n>k—m</tex> не является порядком элемента <tex>x</tex>). Легко проверить, что <tex>\langle x\rangle</tex> — подгруппа <tex>G</tex>. По [[Теорема Лагранжа|теореме Лагранжа]] порядок любой подгруппы делит порядок группы. Значит, и <tex>n</tex> делит порядок <tex>G</tex>. | ||
+ | }} | ||
+ | {{Утверждение | ||
+ | |statement=Все группы простого порядка <tex>p</tex> изоморфны <tex>\mathbb{Z}/p\mathbb{Z}</tex>. | ||
+ | |proof= | ||
+ | Рассмотрим элемент <tex>x\in G,\,x\neq e</tex> c порядком <tex>n</tex> и подмножество <tex>\langle x\rangle=\lbrace e,\,x,\,x^2,\,...,x^{n-1}\rbrace</tex> (все <tex>x^k</tex> различны при <tex>k<n</tex> — см. выше). Очевидно, <tex>\langle x\rangle</tex> — подгруппа <tex>G</tex>, изоморфная <tex>\mathbb{Z}/n\mathbb{Z}</tex>. Но тогда <tex>n</tex> делит <tex>p</tex>(как порядок подгруппы) и не равняется единице(<tex>x^1\neq e</tex>), значит <tex>n=p</tex>. Раз порядок конечной подгруппы <tex>\mathbb{Z}/p\mathbb{Z}\subseteq G</tex> совпадает с порядком группы, то группа и подгруппа просто совпадают: <tex>\mathbb{Z}/p\mathbb{Z}\eqsim G</tex>. | ||
+ | }} | ||
− | + | === Примеры таблиц умножения для конечных групп === | |
+ | Ниже перечислены все группы до шестого порядка включительно: | ||
− | + | * <tex>|G| = 1</tex> | |
− | + | Тривиальная группа | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{| border="1" cellpadding="4" align="center" | {| border="1" cellpadding="4" align="center" | ||
!style="background:#efefef;"| * | !style="background:#efefef;"| * | ||
Строка 75: | Строка 65: | ||
|} | |} | ||
− | 2 | + | * <tex>|G| = 2</tex> |
+ | Группа вычетов по модулю два относительно сложения: <tex>\mathbb{Z}/2\mathbb{Z}</tex> | ||
{| border="1" cellpadding="4" align="center" | {| border="1" cellpadding="4" align="center" | ||
− | !style="background:#efefef;"| * | + | !style="background:#efefef;"| + |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>0</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>1</big> |
+ | |- | ||
+ | !style="background:#efefef;"| <big>0</big> | ||
+ | | <big>0</big> || <big>1</big> | ||
+ | |- | ||
+ | !style="background:#efefef;"| <big>1</big> | ||
+ | | <big>1</big> || <big>0</big> | ||
+ | |} | ||
+ | |||
+ | * <tex>|G| = 3</tex> | ||
+ | Группа вычетов по модулю три относительно сложения: <tex>\mathbb{Z}/3\mathbb{Z}</tex> | ||
+ | {| border="1" cellpadding="4" align="center" | ||
+ | !style="background:#efefef;"| + | ||
+ | !style="background:#efefef;"| <big>0</big> | ||
+ | !style="background:#efefef;"| <big>1</big> | ||
+ | !style="background:#efefef;"| <big>2</big> | ||
+ | |- | ||
+ | !style="background:#efefef;"| <big>0</big> | ||
+ | | <big>0</big> || <big>1</big> || <big>2</big> | ||
+ | |- | ||
+ | !style="background:#efefef;"| <big>1</big> | ||
+ | | <big>1</big> || <big>2</big> || <big>0</big> | ||
+ | |- | ||
+ | !style="background:#efefef;"| <big>2</big> | ||
+ | | <big>2</big> || <big>0</big> || <big>1</big> | ||
+ | |} | ||
+ | |||
+ | * <tex>|G| = 4</tex> | ||
+ | Группа вычетов по модулю четыре относительно сложения: <tex>\mathbb{Z}/4\mathbb{Z}</tex> | ||
+ | {| border="1" cellpadding="4" align="center" | ||
+ | !style="background:#efefef;"| + | ||
+ | !style="background:#efefef;"| <big>0</big> | ||
+ | !style="background:#efefef;"| <big>1</big> | ||
+ | !style="background:#efefef;"| <big>2</big> | ||
+ | !style="background:#efefef;"| <big>3</big> | ||
+ | |- | ||
+ | !style="background:#efefef;"| <big>0</big> | ||
+ | | <big>0</big> || <big>1</big> || <big>2</big> || <big>3</big> | ||
+ | |- | ||
+ | !style="background:#efefef;"| <big>1</big> | ||
+ | | <big>1</big> || <big>0</big> || <big>3</big> || <big>2</big> | ||
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>2</big> |
− | | <big> | + | | <big>2</big> || <big>3</big> || <big>0</big> || <big>1</big> |
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>3</big> |
− | | <big> | + | | <big>3</big> || <big>2</big> || <big>1</big> || <big>0</big> |
|} | |} | ||
− | + | Группа <tex>\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}</tex> | |
{| border="1" cellpadding="4" align="center" | {| border="1" cellpadding="4" align="center" | ||
− | !style="background:#efefef;"| | + | !style="background:#efefef;"| + |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>(0,0)</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>(0,1)</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>(1,0)</big> |
+ | !style="background:#efefef;"| <big>(1,1)</big> | ||
+ | |- | ||
+ | !style="background:#efefef;"| <big>(0,0)</big> | ||
+ | | <big>(0,0)</big> || <big>(0,1)</big> || <big>(1,0)</big> || <big>(1,1)</big> | ||
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>(0,1)</big> |
− | | <big> | + | | <big>(0,1)</big> || <big>(0,0)</big> || <big>(1,1)</big> || <big>(1,0)</big> |
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>(1,0)</big> |
− | | <big> | + | | <big>(1,0)</big> || <big>(1,1)</big> || <big>(0,0)</big> || <big>(0,1)</big> |
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>(1,1)</big> |
− | | <big> | + | | <big>(1,1)</big> || <big>(1,0)</big> || <big>(0,1)</big> || <big>(0,0)</big> |
|} | |} | ||
− | + | * <tex>|G| = 5</tex> | |
+ | Группа вычетов по модулю пять относительно сложения: <tex>\mathbb{Z}/5\mathbb{Z}</tex> | ||
{| border="1" cellpadding="4" align="center" | {| border="1" cellpadding="4" align="center" | ||
− | !style="background:#efefef;"| | + | !style="background:#efefef;"| + |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>0</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>1</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>2</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>3</big> |
+ | !style="background:#efefef;"| <big>4</big> | ||
+ | |- | ||
+ | !style="background:#efefef;"| <big>0</big> | ||
+ | | <big>0</big> || <big>1</big> || <big>2</big> || <big>3</big> || <big>4</big> | ||
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>1</big> |
− | | <big> | + | | <big>1</big> || <big>2</big> || <big>3</big> || <big>4</big> || <big>0</big> |
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>2</big> |
− | | <big> | + | | <big>2</big> || <big>3</big> || <big>4</big> || <big>0</big> || <big>1</big> |
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>3</big> |
− | | <big> | + | | <big>3</big> || <big>4</big> || <big>0</big> || <big>1</big> || <big>2</big> |
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>4</big> |
− | | <big> | + | | <big>4</big> || <big>0</big> || <big>1</big> || <big>2</big> || <big>3</big> |
|} | |} | ||
− | + | * <tex>|G| = 6</tex> | |
+ | Группа вычетов по модулю шесть относительно сложения: <tex>\mathbb{Z}/6\mathbb{Z}</tex> | ||
{| border="1" cellpadding="4" align="center" | {| border="1" cellpadding="4" align="center" | ||
− | !style="background:#efefef;"| | + | !style="background:#efefef;"| + |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>0</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>1</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>2</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>3</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>4</big> |
+ | !style="background:#efefef;"| <big>5</big> | ||
+ | |- | ||
+ | !style="background:#efefef;"| <big>0</big> | ||
+ | | <big>0</big> || <big>1</big> || <big>2</big> || <big>3</big> || <big>4</big> || <big>5</big> | ||
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>1</big> |
− | | <big> | + | | <big>1</big> || <big>2</big> || <big>3</big> || <big>4</big> || <big>5</big> || <big>0</big> |
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>2</big> |
− | | <big> | + | | <big>2</big> || <big>3</big> || <big>4</big> || <big>5</big> || <big>0</big> || <big>1</big> |
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>3</big> |
− | | <big> | + | | <big>3</big> || <big>4</big> || <big>5</big> || <big>0</big> || <big>1</big> || <big>2</big> |
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>4</big> |
− | | <big> | + | | <big>4</big> || <big>5</big> || <big>0</big> || <big>1</big> || <big>2</big> || <big>3</big> |
|- | |- | ||
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>5</big> |
− | | <big> | + | | <big>5</big> || <big>0</big> || <big>1</big> || <big>2</big> || <big>3</big> || <big>4</big> |
|} | |} | ||
− | + | Группа перестановок множества из трех элементов: <tex>\mathbb{S}_3</tex> | |
{| border="1" cellpadding="4" align="center" | {| border="1" cellpadding="4" align="center" | ||
!style="background:#efefef;"| * | !style="background:#efefef;"| * | ||
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>e</big> |
− | !style="background:#efefef;"| <big>a</big> | + | !style="background:#efefef;"| <big>a</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>aa</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>b</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>c</big> |
− | !style="background:#efefef;"| <big> | + | !style="background:#efefef;"| <big>d</big> |
|- | |- | ||
!style="background:#efefef;"| <big>e</big> | !style="background:#efefef;"| <big>e</big> | ||
− | | <big>e</big> || <big>a</big> || <big> | + | | <big>e</big> || <big>a</big> || <big>aa</big> || <big>b</big> || <big>c</big> || <big>d</big> |
|- | |- | ||
!style="background:#efefef;"| <big>a</big> | !style="background:#efefef;"| <big>a</big> | ||
− | | <big>a</big> || <big>e</big> || <big>d</big> || <big> | + | | <big>a</big> || <big>aa</big> || <big>e</big> || <big>c</big> || <big>d</big> || <big>b</big> |
+ | |- | ||
+ | !style="background:#efefef;"| <big>aa</big> | ||
+ | | <big>aa</big> || <big>e</big> || <big>a</big> || <big>d</big> || <big>b</big> || <big>c</big> | ||
|- | |- | ||
!style="background:#efefef;"| <big>b</big> | !style="background:#efefef;"| <big>b</big> | ||
− | | <big>b</big> || <big> | + | | <big>b</big> || <big>d</big> || <big>c</big> || <big>e</big> || <big>aa</big> || <big>a</big> |
|- | |- | ||
!style="background:#efefef;"| <big>c</big> | !style="background:#efefef;"| <big>c</big> | ||
− | | <big>c</big> || <big> | + | | <big>c</big> || <big>b</big> || <big>d</big> || <big>a</big> || <big>e</big> || <big>aa</big> |
|- | |- | ||
!style="background:#efefef;"| <big>d</big> | !style="background:#efefef;"| <big>d</big> | ||
− | | <big>d</big> || <big>c | + | | <big>d</big> || <big>c</big> || <big>b</big> || <big>aa</big> || <big>a</big> || <big>e</big> |
− | |||
− | |||
− | |||
|} | |} | ||
+ | |||
+ | Для группы <tex>\mathbb{S}_3</tex> <tex>a</tex> — это циклическая перестановка <tex>(123)\rightarrow(231)</tex>, а <tex>b,\,c,\,d</tex> — транспозиции <tex>(123)\rightarrow(213),\,(123)\rightarrow(132),\,(123)\rightarrow(321)</tex> соответственно. | ||
[[Категория: Теория групп]] | [[Категория: Теория групп]] |
Текущая версия на 19:05, 4 сентября 2022
Определение: |
Группа называется конечной, если множество ее элементов конечно. Мощность множества элементов группы называют порядком группы и обозначают . |
Содержание
Таблицы умножения для конечных групп
Таблица умножения (таблица Кэли) — таблица, которая описывает структуру конечных алгебраических систем с одной бинарной операцией. Таблица позволяет определить, является ли группа абелевой, найти ядро группы и обратные элементы по отношению к другим элементам в этой группе.
Структура
Пусть
— группа из элементов.Тогда таблица будет выглядеть следующим образом:
* | a1 | a2 | ... | an |
---|---|---|---|---|
a1 | a1a1 | a1a2 | ... | a1an |
a2 | a2a1 | a2a2 | ... | a2an |
... | ... | ... | ... | ... |
an | ana1 | ana2 | ... | anan |
Свойства
Утверждение: |
Каждая строка или столбец являются перестановкой элементов группы. |
Пусть | . Тогда и . Так как количество клеток в строке равно количеству элементов, то, по принципу Дирихле, каждый элемент группы встречается в строке один раз.
Утверждение: |
Если таблица симметрична относительно главной диагонали, то операция умножения коммутативна. |
Таблица симметрична | для любых
Утверждение: |
В конечной группе порядок каждого элемента является делителем порядка группы. |
Рассмотрим элемент теореме Лагранжа порядок любой подгруппы делит порядок группы. Значит, и делит порядок . | c порядком и подмножество (все различны при — в противном случае при , т.е. не является порядком элемента ). Легко проверить, что — подгруппа . По
Утверждение: |
Все группы простого порядка изоморфны . |
Рассмотрим элемент | c порядком и подмножество (все различны при — см. выше). Очевидно, — подгруппа , изоморфная . Но тогда делит (как порядок подгруппы) и не равняется единице( ), значит . Раз порядок конечной подгруппы совпадает с порядком группы, то группа и подгруппа просто совпадают: .
Примеры таблиц умножения для конечных групп
Ниже перечислены все группы до шестого порядка включительно:
Тривиальная группа
* | e |
---|---|
e | e |
Группа вычетов по модулю два относительно сложения:
+ | 0 | 1 |
---|---|---|
0 | 0 | 1 |
1 | 1 | 0 |
Группа вычетов по модулю три относительно сложения:
+ | 0 | 1 | 2 |
---|---|---|---|
0 | 0 | 1 | 2 |
1 | 1 | 2 | 0 |
2 | 2 | 0 | 1 |
Группа вычетов по модулю четыре относительно сложения:
+ | 0 | 1 | 2 | 3 |
---|---|---|---|---|
0 | 0 | 1 | 2 | 3 |
1 | 1 | 0 | 3 | 2 |
2 | 2 | 3 | 0 | 1 |
3 | 3 | 2 | 1 | 0 |
Группа
+ | (0,0) | (0,1) | (1,0) | (1,1) |
---|---|---|---|---|
(0,0) | (0,0) | (0,1) | (1,0) | (1,1) |
(0,1) | (0,1) | (0,0) | (1,1) | (1,0) |
(1,0) | (1,0) | (1,1) | (0,0) | (0,1) |
(1,1) | (1,1) | (1,0) | (0,1) | (0,0) |
Группа вычетов по модулю пять относительно сложения:
+ | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 |
1 | 1 | 2 | 3 | 4 | 0 |
2 | 2 | 3 | 4 | 0 | 1 |
3 | 3 | 4 | 0 | 1 | 2 |
4 | 4 | 0 | 1 | 2 | 3 |
Группа вычетов по модулю шесть относительно сложения:
+ | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 2 | 3 | 4 | 5 | 0 |
2 | 2 | 3 | 4 | 5 | 0 | 1 |
3 | 3 | 4 | 5 | 0 | 1 | 2 |
4 | 4 | 5 | 0 | 1 | 2 | 3 |
5 | 5 | 0 | 1 | 2 | 3 | 4 |
Группа перестановок множества из трех элементов:
* | e | a | aa | b | c | d |
---|---|---|---|---|---|---|
e | e | a | aa | b | c | d |
a | a | aa | e | c | d | b |
aa | aa | e | a | d | b | c |
b | b | d | c | e | aa | a |
c | c | b | d | a | e | aa |
d | d | c | b | aa | a | e |
Для группы
— это циклическая перестановка , а — транспозиции соответственно.