Сложение и разность потоков — различия между версиями
Lytr777 (обсуждение | вклад) м |
м (rollbackEdits.php mass rollback) |
||
(не показаны 2 промежуточные версии 2 участников) | |||
Строка 7: | Строка 7: | ||
Необходимо проверить, выполняются ли ограничения антисимметричности, пропускной способности и сохранения [[Определение_сети,_потока#flow|потока]]. | Необходимо проверить, выполняются ли ограничения антисимметричности, пропускной способности и сохранения [[Определение_сети,_потока#flow|потока]]. | ||
− | + | # Для подтверждения антисимметричности заметим, что для всех <tex>(u,v) \in V</tex> справедливо: | |
− | + | #: <tex> (f + f')(u, v) = f(u,v) + f'(u,v) = -f(v,u) - f'(v,u) </tex> <tex> = -(f(v,u) + f'(v,u)) = -(f + f')(v,u)</tex> | |
− | <tex> (f + f')(u, v) = f(u,v) + f'(u,v) = -f(v,u) - f'(v,u) </tex> <tex> = -(f(v,u) + f'(v,u)) = -(f + f')(v,u)</tex> | + | #: |
− | + | # Покажем соблюдение ограничений пропускной способности. | |
− | + | #: Заметим, что <tex>f'(u,v) \leqslant c_f(u,v)</tex> для всех <tex>u,v \in V </tex> и <tex> c_f(u, v) = c(u, v) - f(u, v) </tex>. Тогда <br> | |
− | + | #: <tex>(f + f')(u,v) = f(u,v) + f'(u,v) \leqslant f(u,v) + (c(u,v) - f(u,v)) = c(u,v) </tex>. | |
− | <tex>(f + f')(u,v) = f(u,v) + f'(u,v) \leqslant f(u,v) + (c(u,v) - f(u,v)) = c(u,v) </tex>. | + | #: |
− | + | # Заметим, что для всех <tex>u \in V - \{s,t\}</tex> справедливо равенство: <br> | |
− | + | #: <tex> \sum\limits_{v\in V} (f + f')(u, v) = \sum\limits_{v\in V} (f(u,v) + f'(u,v)) = \sum\limits_{v\in V} f(u,v) + \sum\limits_{v\in V} f'(u,v) = 0 + 0 = 0</tex> <br> | |
− | + | #:<tex> |f + f'| = \sum\limits_{v\in V} (f + f')(s, v) = \sum\limits_{v\in V} (f(s,v) + f'(s,v)) </tex> <tex>= \sum\limits_{v\in V} f(s,v) + \sum\limits_{v\in V} f'(s,v) = |f| + |f'|</tex> | |
− | <tex> \sum\limits_{v\in V} (f + f')(u, v) = \sum\limits_{v\in V} (f(u,v) + f'(u,v)) = \sum\limits_{v\in V} f(u,v) + \sum\limits_{v\in V} f'(u,v) = 0 + 0 = 0</tex> <br> | ||
− | <tex> |f + f'| = \sum\limits_{v\in V} (f + f')(s, v) = \sum\limits_{v\in V} (f(s,v) + f'(s,v)) </tex> <tex>= \sum\limits_{v\in V} f(s,v) + \sum\limits_{v\in V} f'(s,v) = |f| + |f'|</tex> | ||
}} | }} | ||
Текущая версия на 19:05, 4 сентября 2022
Лемма (о сложении потоков): |
Пусть транспортная сеть с источником и стоком , а — поток в . Пусть — остаточная сеть в , порожденная потоком , а — поток в . Тогда сумма потоков , определяемая уравнением , является потоком в , и величина этого потока равна . — |
Доказательство: |
Необходимо проверить, выполняются ли ограничения антисимметричности, пропускной способности и сохранения потока.
|
Лемма (о разности потоков): |
Пусть потоки в . Пусть — остаточная сеть в , порожденная потоком . Тогда разность потоков , определяемая уравнением , является потоком в , и величина этого потока равна . — транспортная сеть с источником и стоком , а и — |
Доказательство: |
Антисимметричность и правило сохранения потока для проверяются аналогично лемме о сложении потоков.Покажем соблюдение ограничений пропускной способности. . Теперь покажем, что величина потока равна разности величин потоков и . |
Источники информации
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ.[1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.