1ripi1sumwc — различия между версиями
Dimitrova (обсуждение | вклад) (→Постановка задачи) |
м (rollbackEdits.php mass rollback) |
||
(не показано 59 промежуточных версий 4 участников) | |||
Строка 1: | Строка 1: | ||
− | == | + | <tex dpi = "200"> 1 \mid r_i,p_i = 1 \mid \sum w_i C_i</tex> |
− | + | ||
− | + | {{Задача | |
− | + | |definition= | |
− | + | Дано <tex>n</tex> работ и один станок. Для каждой работы известно её время появления <tex>r_{i}</tex> и вес <tex>w_{i}</tex>. Время выполнения всех работ <tex>p_i</tex> равно <tex>1</tex>. Требуется выполнить все работы, чтобы значение <tex>\sum w_{i} C_{i}</tex> было минимальным, где <tex>C_{i}</tex> {{---}} время окончания работы. | |
− | + | }} | |
− | Требуется выполнить все работы, чтобы значение <tex>\sum w_{i} C_{i}</tex> было минимальным, где <tex>C_{i}</tex> {{---}} время окончания работы. | + | |
+ | ==Более простые варианты исходной задачи== | ||
+ | |||
+ | Перед решением основной задачи рассмотрим более простые. | ||
+ | |||
+ | ===Вариант 1=== | ||
+ | <tex> 1 \mid p_i = 1\mid \sum C_i</tex> | ||
+ | |||
+ | Этот случай простейший. Ответом будет <tex>\sum\limits_{k = 1}^n k</tex>, так как мы <tex>n</tex> раз сложим время окончания выполнения одной работы. Воспользовавшись формулой суммы первых <tex>n</tex> членов арифметической прогрессии алгоритм <tex>S_n=\dfrac{a_1+a_n}2 \cdot n</tex> будет работает за <tex>O(1)</tex>, но если нужно вывести и само расписание, время работы будет <tex>O(n)</tex>. | ||
+ | |||
+ | ===Вариант 2=== | ||
+ | <tex> 1 \mid p_i = 1\mid \sum w_i C_i</tex> | ||
+ | |||
+ | Для верного выполнения просто выставим работы по порядку невозрастания весов, тогда ответом будет <tex> \sum\limits_{i = 1}^nw_i C_i</tex>, так как мы <tex>n</tex> раз сложим время окончания выполнения одной работы (которое в нашем случае <tex>C_{i-1}+1</tex>) домноженное на вес этой работы. Данный алгоритм корректен по [[Задача_о_минимуме/максимуме_скалярного_произведения|теореме о минимуме/максимуме скалярного произведения]], так как мы сопоставляем две последовательности, подходящие под условия теоремы. | ||
+ | |||
+ | Так как [[Сортировка|сортировка]] весов занимает <tex>O(n \log n)</tex> время, то асимптотика времени работы алгорита равна <tex>O(n + n \log n)</tex>. | ||
− | ==Описание алгоритма== | + | ==Основная задача== |
+ | ===Описание алгоритма=== | ||
Пусть <tex>time</tex> {{---}} текущий момент времени.<br/> | Пусть <tex>time</tex> {{---}} текущий момент времени.<br/> | ||
Для каждого очередного значения <tex>time</tex>, которое изменяется от <tex>0</tex> до времени окончания последней работы, будем: | Для каждого очередного значения <tex>time</tex>, которое изменяется от <tex>0</tex> до времени окончания последней работы, будем: | ||
<ol> | <ol> | ||
− | <li> Выбирать работу <tex>j</tex> из множества невыполненных работ, у которой <tex>r_{i} \ | + | <li> Выбирать работу <tex>j</tex> из множества невыполненных работ, у которой <tex>r_{i} \leqslant time</tex>, а значение <tex>w_{i}</tex> максимально.</li> |
<li> Если мы смогли найти работу <tex>j</tex>, то выполняем её в момент времени <tex>time</tex> и удаляем из множества невыполненных работ.</li> | <li> Если мы смогли найти работу <tex>j</tex>, то выполняем её в момент времени <tex>time</tex> и удаляем из множества невыполненных работ.</li> | ||
<li> Увеличиваем <tex>time</tex> на один.</li> | <li> Увеличиваем <tex>time</tex> на один.</li> | ||
</ol> | </ol> | ||
− | ==Доказательство корректности алгоритма== | + | ===Доказательство корректности алгоритма=== |
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
Строка 32: | Строка 48: | ||
}} | }} | ||
− | ==Псевдокод== | + | ===Псевдокод=== |
− | <tex> S \leftarrow \{1 \ | + | |
− | <tex> time \leftarrow 0</tex> | + | ====Реализация 1==== |
− | <tex> answer \leftarrow 0</tex> | + | <tex> S \leftarrow \{1 \ldots n\}</tex> |
− | while <tex> S \neq \varnothing </tex> | + | <tex> \mathtt{time} \leftarrow 0</tex> |
− | <tex> j \leftarrow i | + | <tex> \mathtt{answer} \leftarrow 0</tex> |
− | if <tex>j \neq null </tex> | + | '''while''' <tex> S \neq \varnothing </tex> |
+ | <tex> j \leftarrow null </tex> | ||
+ | '''if''' <tex> i \in S</tex> '''and''' <tex> r_{i} \leqslant \mathtt{time}</tex> '''and''' <tex>w_i \geqslant \max\limits_{j \in S, j = 1 \ldots n} w_j</tex> | ||
+ | <tex> j \leftarrow i </tex> | ||
+ | '''if''' <tex>j \neq null </tex> | ||
<tex> S \leftarrow S \setminus j</tex> | <tex> S \leftarrow S \setminus j</tex> | ||
− | <tex> Answer \leftarrow Answer + time \cdot w_{j}</tex> | + | <tex> \mathtt{Answer} \leftarrow \mathtt{Answer} + \mathtt{time} \cdot w_{j}</tex> |
− | <tex> time++</tex> | + | <tex> \mathtt{time++}</tex> |
+ | |||
+ | Множество <tex>S</tex> станет пустым не позже, чем через <tex>n + \max\limits_{i = 1 \ldots n} r_{i}</tex> шагов цикла. Определить максимум в множестве можно за время <tex>O(\log n)</tex>, используя , например, [[:Категория:Приоритетные_очереди|очередь с приоритетами]]. Значит общее время работы алгоритма <tex>O((n + \max\limits_{i = 1 \ldots n} r_{i})\log n)</tex> | ||
+ | |||
+ | ====Реализация 2==== | ||
+ | * <tex>\mathtt{Q}</tex> {{---}} обычная [[Очередь | очередь]], в которой работы изначально располагаются в отсортированном по <tex>r_i</tex> порядке, | ||
+ | * <tex>\mathtt{P}</tex> {{---}} [[Приоритетные очереди | приоритетная очередь]] по максимуму. | ||
+ | |||
+ | <tex> \mathtt{time} \leftarrow 1</tex> | ||
+ | <tex> \mathtt{answer} \leftarrow 0</tex> | ||
+ | '''while''' <tex>\mathtt{Q} \neq \varnothing </tex> '''and''' <tex>\mathtt{P} \neq \varnothing </tex> | ||
+ | '''if''' <tex>\mathtt{Q} \neq \varnothing </tex> | ||
+ | <tex> j \leftarrow \mathtt{Q.head()}</tex> | ||
+ | '''if''' <tex>\mathtt{time} < r_j</tex> | ||
+ | <tex>\mathtt{time} \leftarrow r_j</tex> | ||
+ | '''while''' <tex> \mathtt{time} \geqslant r_j</tex> | ||
+ | <tex>\mathtt{P.insert}(w_j)</tex> | ||
+ | <tex>\mathtt{Q.pop()}</tex> | ||
+ | '''if''' <tex>\mathtt{Q} = \varnothing </tex> | ||
+ | '''break''' | ||
+ | '''else''' | ||
+ | <tex> j \leftarrow \mathtt{Q.head()}</tex> | ||
+ | <tex> \mathtt{Answer} \leftarrow \mathtt{Answer} + \mathtt{time} \cdot \mathtt{P.extractMax()} </tex> | ||
+ | <tex> \mathtt{time}\texttt{++}</tex> | ||
+ | |||
+ | Данная реализация имеет идею, аналогичную предыдущей: сначала обрабатывать работу с максимальным весом среди всех доступных. | ||
+ | В начале работы сортируются по <tex>r_i</tex>, из очереди <tex>\mathtt{Q}</tex> достаётся каждая работа, причём ровно один раз, аналогично для очереди <tex>\mathtt{P}</tex>, поэтому итоговая асимптотика времени работы алгоритма составляет <tex>O(n \log n)</tex>. | ||
+ | |||
+ | ==См. также== | ||
+ | * [[Классификация задач]] | ||
+ | * [[1outtreesumwc|<tex>1 \mid outtree \mid \sum w_i C_i</tex>]] | ||
+ | * [[1ridipi1|<tex>1 | r_{i}, d_{i}, p_{i}=1 | -</tex>]] | ||
− | == | + | ==Источники информации== |
− | + | * P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 19-20 | |
+ | * P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 38-39 | ||
+ | * P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 84-85 | ||
+ | * Лазарев А.А., Мусатова Е.Г., Кварацхелия А.Г., Гафаров Е.Р. Пособие по теории расписаний. | ||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Теория расписаний]] | [[Категория: Теория расписаний]] |
Текущая версия на 19:07, 4 сентября 2022
Задача: |
Дано | работ и один станок. Для каждой работы известно её время появления и вес . Время выполнения всех работ равно . Требуется выполнить все работы, чтобы значение было минимальным, где — время окончания работы.
Содержание
Более простые варианты исходной задачи
Перед решением основной задачи рассмотрим более простые.
Вариант 1
Этот случай простейший. Ответом будет
, так как мы раз сложим время окончания выполнения одной работы. Воспользовавшись формулой суммы первых членов арифметической прогрессии алгоритм будет работает за , но если нужно вывести и само расписание, время работы будет .Вариант 2
Для верного выполнения просто выставим работы по порядку невозрастания весов, тогда ответом будет теореме о минимуме/максимуме скалярного произведения, так как мы сопоставляем две последовательности, подходящие под условия теоремы.
, так как мы раз сложим время окончания выполнения одной работы (которое в нашем случае ) домноженное на вес этой работы. Данный алгоритм корректен поТак как сортировка весов занимает время, то асимптотика времени работы алгорита равна .
Основная задача
Описание алгоритма
Пусть
Для каждого очередного значения , которое изменяется от до времени окончания последней работы, будем:
- Выбирать работу из множества невыполненных работ, у которой , а значение максимально.
- Если мы смогли найти работу , то выполняем её в момент времени и удаляем из множества невыполненных работ.
- Увеличиваем на один.
Доказательство корректности алгоритма
Теорема: |
Расписание, построенное данным алгоритмом, является корректным и оптимальным. |
Доказательство: |
Доказательство будем вести от противного. Первая скобка отрицательная: |
Псевдокод
Реализация 1
while if and and if
Множество очередь с приоритетами. Значит общее время работы алгоритма
станет пустым не позже, чем через шагов цикла. Определить максимум в множестве можно за время , используя , например,Реализация 2
- очередь, в которой работы изначально располагаются в отсортированном по порядке, — обычная
- приоритетная очередь по максимуму. —
while and if if while if break else
Данная реализация имеет идею, аналогичную предыдущей: сначала обрабатывать работу с максимальным весом среди всех доступных. В начале работы сортируются по
, из очереди достаётся каждая работа, причём ровно один раз, аналогично для очереди , поэтому итоговая асимптотика времени работы алгоритма составляет .См. также
Источники информации
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 19-20
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 38-39
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 84-85
- Лазарев А.А., Мусатова Е.Г., Кварацхелия А.Г., Гафаров Е.Р. Пособие по теории расписаний.