Сортировка слиянием — различия между версиями
Tiss93 (обсуждение | вклад) (→Рекурсивный алгоритм) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 73 промежуточные версии 13 участников) | |||
Строка 1: | Строка 1: | ||
− | + | '''Сортировка слиянием''' (англ. ''Merge sort'') {{---}} алгоритм сортировки, использующий <tex>O(n)</tex> дополнительной памяти и работающий за <tex>O(n\log(n))</tex> времени. | |
− | |||
− | ''' | ||
− | + | ==Принцип работы== | |
+ | [[Файл:Merging_two_arrays.png|270px|right|thumb|Пример работы процедуры слияния.]] | ||
− | + | [[Файл:Merge sort1.png|300px|right|thumb|Пример работы рекурсивного алгоритма сортировки слиянием]] | |
− | |||
− | + | [[Файл:Merge sort itearative.png|300px|right|thumb|Пример работы итеративного алгоритма сортировки слиянием]] | |
− | |||
− | + | Алгоритм использует принцип «разделяй и властвуй»: задача разбивается на подзадачи меньшего размера, которые решаются по отдельности, после чего их решения комбинируются для получения решения исходной задачи. Конкретно процедуру сортировки слиянием можно описать следующим образом: | |
− | + | # Если в рассматриваемом массиве один элемент, то он уже отсортирован {{---}} алгоритм завершает работу. | |
+ | # Иначе массив разбивается на две части, которые сортируются рекурсивно. | ||
+ | # После сортировки двух частей массива к ним применяется процедура слияния, которая по двум отсортированным частям получает исходный отсортированный массив. | ||
− | + | ===Слияние двух массивов=== | |
+ | У нас есть два массива <tex>a</tex> и <tex>b</tex> (фактически это будут две части одного массива, но для удобства будем писать, что у нас просто два массива). Нам надо получить массив <tex>c</tex> размером <tex>|a| + |b|</tex>. Для этого можно применить процедуру слияния. Эта процедура заключается в том, что мы сравниваем элементы массивов (начиная с начала) и меньший из них записываем в финальный. И затем, в массиве у которого оказался меньший элемент, переходим к следующему элементу и сравниваем теперь его. В конце, если один из массивов закончился, мы просто дописываем в финальный другой массив. После мы наш финальный массив записываем заместо двух исходных и получаем отсортированный участок. | ||
− | + | Множество отсортированных списков с операцией <tex>\mathrm{merge}</tex> является [[Моноид|моноидом]], где нейтральным элементом будет пустой список. | |
− | + | Ниже приведён псевдокод процедуры слияния, который сливает две части массива <tex>a</tex> {{---}} <tex>[left; mid)</tex> и <tex>[mid; right)</tex> | |
− | + | <code style="display: inline-block"> | |
− | [[ | + | '''function''' merge(a : '''int[n]'''; left, mid, right : '''int'''): |
− | < | + | it1 = 0 |
− | + | it2 = 0 | |
+ | result : '''int[right - left]''' | ||
+ | |||
+ | '''while''' left + it1 < mid '''and''' mid + it2 < right | ||
+ | '''if''' a[left + it1] < a[mid + it2] | ||
+ | result[it1 + it2] = a[left + it1] | ||
+ | it1 += 1 | ||
+ | '''else''' | ||
+ | result[it1 + it2] = a[mid + it2] | ||
+ | it2 += 1 | ||
+ | |||
+ | '''while''' left + it1 < mid | ||
+ | result[it1 + it2] = a[left + it1] | ||
+ | it1 += 1 | ||
+ | |||
+ | '''while''' mid + it2 < right | ||
+ | result[it1 + it2] = a[mid + it2] | ||
+ | it2 += 1 | ||
+ | |||
+ | '''for''' i = 0 '''to''' it1 + it2 | ||
+ | a[left + i] = result[i] | ||
+ | </code> | ||
− | [[ | + | ===Рекурсивный алгоритм=== |
+ | Функция сортирует подотрезок массива с индексами в полуинтервале <tex>[left; right)</tex>. | ||
+ | <code style="display: inline-block"> | ||
+ | '''function''' mergeSortRecursive(a : '''int[n]'''; left, right : '''int'''): | ||
+ | '''if''' left + 1 >= right | ||
+ | '''return''' | ||
+ | mid = (left + right) / 2 | ||
+ | mergeSortRecursive(a, left, mid) | ||
+ | mergeSortRecursive(a, mid, right) | ||
+ | merge(a, left, mid, right) | ||
+ | </code> | ||
− | = | + | ===Итеративный алгоритм=== |
− | + | При итеративном алгоритме используется на <tex>O(\log n)</tex> меньше памяти, которая раньше тратилась на рекурсивные вызовы. | |
+ | <code style="display: inline-block"> | ||
+ | '''function''' mergeSortIterative(a : '''int[n]'''): | ||
+ | '''for''' i = 1 '''to''' n, i *= 2 | ||
+ | '''for''' j = 0 '''to''' n - i, j += 2 * i | ||
+ | merge(a, j, j + i, min(j + 2 * i, n)) | ||
+ | </code> | ||
− | / | + | ==Время работы== |
+ | Чтобы оценить время работы этого алгоритма, составим рекуррентное соотношение. Пускай <tex>T(n)</tex> {{---}} время сортировки массива длины <tex>n</tex>, тогда для сортировки слиянием справедливо <tex>T(n)=2T(n/2)+O(n)</tex> <br> | ||
+ | <tex>O(n)</tex> {{---}} время, необходимое на то, чтобы слить два массива длины <tex>n</tex>. Распишем это соотношение: | ||
− | // | + | <tex>T(n)=2T(n/2)+O(n)=4T(n/4)+2O(n)=\dots=T(1)+\log(n)O(n)=O(n\log(n))</tex>. |
− | < | + | ==Сравнение с другими алгоритмами== |
+ | Достоинства: | ||
+ | * устойчивая, | ||
+ | * можно написать эффективную [[Многопоточная сортировка слиянием|многопоточную сортировку слиянием]], | ||
+ | * сортировка данных, расположенных на периферийных устройствах и не вмещающихся в оперативную память<ref>[http://en.wikipedia.org/wiki/External_sorting Wikipedia {{---}} External sorting]</ref>. | ||
+ | Недостатки: | ||
+ | * требуется дополнительно <tex>O(n)</tex> памяти, но можно модифицировать до <tex>O(1)</tex>. | ||
− | + | ==См. также== | |
+ | * [[Сортировка кучей]] | ||
+ | * [[Быстрая сортировка]] | ||
+ | * [[Timsort]] | ||
+ | * [[Cортировка слиянием с использованием O(1) дополнительной памяти]] | ||
− | + | ==Примечания== | |
+ | <references/> | ||
− | + | ==Источники информации== | |
+ | *[http://ru.wikipedia.org/wiki/Mergesort Википедия {{---}} сортировка слиянием] | ||
+ | *[http://www.sorting-algorithms.com/merge-sort Визуализатор] | ||
+ | *[https://ru.wikibooks.org/wiki/Примеры_реализации_сортировки_слиянием Викиучебник {{---}} Примеры реализации на различных языках программирования] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Сортировки]] | [[Категория: Сортировки]] | ||
+ | [[Категория: Сортировки на сравнениях]] |
Текущая версия на 19:10, 4 сентября 2022
Сортировка слиянием (англ. Merge sort) — алгоритм сортировки, использующий
дополнительной памяти и работающий за времени.Содержание
Принцип работы
Алгоритм использует принцип «разделяй и властвуй»: задача разбивается на подзадачи меньшего размера, которые решаются по отдельности, после чего их решения комбинируются для получения решения исходной задачи. Конкретно процедуру сортировки слиянием можно описать следующим образом:
- Если в рассматриваемом массиве один элемент, то он уже отсортирован — алгоритм завершает работу.
- Иначе массив разбивается на две части, которые сортируются рекурсивно.
- После сортировки двух частей массива к ним применяется процедура слияния, которая по двум отсортированным частям получает исходный отсортированный массив.
Слияние двух массивов
У нас есть два массива
и (фактически это будут две части одного массива, но для удобства будем писать, что у нас просто два массива). Нам надо получить массив размером . Для этого можно применить процедуру слияния. Эта процедура заключается в том, что мы сравниваем элементы массивов (начиная с начала) и меньший из них записываем в финальный. И затем, в массиве у которого оказался меньший элемент, переходим к следующему элементу и сравниваем теперь его. В конце, если один из массивов закончился, мы просто дописываем в финальный другой массив. После мы наш финальный массив записываем заместо двух исходных и получаем отсортированный участок.Множество отсортированных списков с операцией моноидом, где нейтральным элементом будет пустой список.
являетсяНиже приведён псевдокод процедуры слияния, который сливает две части массива
function merge(a : int[n]; left, mid, right : int): it1 = 0 it2 = 0 result : int[right - left] while left + it1 < mid and mid + it2 < right if a[left + it1] < a[mid + it2] result[it1 + it2] = a[left + it1] it1 += 1 else result[it1 + it2] = a[mid + it2] it2 += 1 while left + it1 < mid result[it1 + it2] = a[left + it1] it1 += 1 while mid + it2 < right result[it1 + it2] = a[mid + it2] it2 += 1 for i = 0 to it1 + it2 a[left + i] = result[i]
Рекурсивный алгоритм
Функция сортирует подотрезок массива с индексами в полуинтервале
function mergeSortRecursive(a : int[n]; left, right : int): if left + 1 >= right return mid = (left + right) / 2 mergeSortRecursive(a, left, mid) mergeSortRecursive(a, mid, right) merge(a, left, mid, right)
Итеративный алгоритм
При итеративном алгоритме используется на
function mergeSortIterative(a : int[n]): for i = 1 to n, i *= 2 for j = 0 to n - i, j += 2 * i merge(a, j, j + i, min(j + 2 * i, n))
Время работы
Чтобы оценить время работы этого алгоритма, составим рекуррентное соотношение. Пускай
— время, необходимое на то, чтобы слить два массива длины . Распишем это соотношение:
.
Сравнение с другими алгоритмами
Достоинства:
- устойчивая,
- можно написать эффективную многопоточную сортировку слиянием,
- сортировка данных, расположенных на периферийных устройствах и не вмещающихся в оперативную память[1].
Недостатки:
- требуется дополнительно памяти, но можно модифицировать до .
См. также
- Сортировка кучей
- Быстрая сортировка
- Timsort
- Cортировка слиянием с использованием O(1) дополнительной памяти