Нормированные пространства (3 курс) — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 26 промежуточных версий 12 участников) | |||
Строка 1: | Строка 1: | ||
− | |||
− | |||
− | |||
− | |||
{{Определение | {{Определение | ||
|id=defvs | |id=defvs | ||
|definition= | |definition= | ||
− | '''Линейное (векторное) пространство над полем | + | '''Линейное (векторное) пространство над полем <tex>K</tex>''' — это множество <tex>L</tex> с заданными на нем операциями сложениями и умножения на скаляр такими, что: |
− | * По операции сложения | + | * По операции сложения <tex>L</tex> является абелевой группой — выполняются: |
− | ** ассоциативность — | + | ** ассоциативность — <tex>\forall x, y, z \in L: (x + y) + z = x + (y + z)</tex>; |
− | ** существование нейтрального элемента — | + | ** существование нейтрального элемента — <tex>\exists \mathrm{0} \in L\ \forall x \in L: x + \mathrm{0} = \mathrm{0} + x = x</tex>, причем можно показать, что он единственный; |
− | ** существование обратного элемента — | + | ** существование обратного элемента — <tex>\forall x \in L\ \exists y: x + y = \mathrm{0}</tex>, такой <tex>y</tex> называют обратным к <tex>x</tex>, причем можно показать, что он единственный; |
− | ** коммутативность — | + | ** коммутативность — <tex>\forall x, y \in L: x + y = y + x</tex>; |
* Для операции умножения на скаляр: | * Для операции умножения на скаляр: | ||
− | ** ассоциативность умножения на скаляр — | + | ** ассоциативность умножения на скаляр — <tex>\forall \alpha, \beta \in K\ \forall x \in L: (\alpha \beta) x = \alpha (\beta x)</tex>; |
− | ** унитарность: | + | ** унитарность: <tex>\forall x \in L: 1 \cdot x = x</tex>, где <tex>1</tex> — единица по умножению в поле <tex>K</tex>; |
− | ** дистрибутивность умножения на скаляр относительно сложения векторов — | + | ** дистрибутивность умножения на скаляр относительно сложения векторов — <tex>\forall \alpha \in K\ \forall x, y \in L: \alpha(x + y) = \alpha x + \alpha y</tex>; |
− | ** дистрибутивность умножения на вектор относительно сложения скаляров — | + | ** дистрибутивность умножения на вектор относительно сложения скаляров — <tex>\forall \alpha, \beta \in K\ \forall x \in L: (\alpha + \beta) x = \alpha x + \beta x</tex>. |
}} | }} | ||
Строка 22: | Строка 18: | ||
|id=defnorm | |id=defnorm | ||
|definition= | |definition= | ||
− | Функция | + | Функция <tex>\| \cdot \|: L \to \mathbb{R}</tex> называется нормой в пространстве <tex>L</tex>, если для нее выполняется: |
− | # | + | # <tex>\forall x \in L: \| x \| \ge 0</tex>, <tex>\| x \| = 0 \iff x = \mathrm{0}</tex> |
− | # | + | # <tex>\forall \alpha \in \mathbb{R}\ \forall x \in L: \| \alpha x \| = |\alpha |\| x \|</tex> |
− | # | + | # <tex>\forall x, y \in L: \| x + y \| \le \| x \| + \| y \|</tex> |
Пространство с введенной на нем нормой называют '''нормированным пространством'''. | Пространство с введенной на нем нормой называют '''нормированным пространством'''. | ||
}} | }} | ||
− | Заметим, что любое нормированное пространство можно превратить в метрическое, задав метрику как | + | Заметим, что любое нормированное пространство можно превратить в метрическое, задав метрику как <tex>\rho(x, y) = \| x - y \|</tex>. Заметим, что обратное неверно: например, хоть <tex>\mathbb{R}^{\infty}</tex> c <tex>\rho(x, y) = \sum 2^{-k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}</tex> и можно наделить линейной структурой, не существует нормы, аналогичной по сходимости с этой метрикой. |
+ | |||
+ | {{Утверждение | ||
+ | |statement= | ||
+ | В нормированных пространствах линейные операции непрерывны. | ||
+ | |proof= | ||
+ | Пусть <tex> x_n \to x , y_n \to y, \alpha_n \to \alpha</tex>. | ||
+ | |||
+ | Тогда <tex> x_n + y_n \to x + y </tex>, так как <tex> \|(x_n + y_n) - (x + y)\| \le \|x_n - x\| + \|y_n - y\| \to 0</tex>. | ||
− | + | <tex> \alpha_n x_n \to \alpha x </tex>, так как <tex> \|\alpha_n x_n - \alpha x\| = \|\alpha(x_n - x) + (\alpha_n - \alpha) x_n\| \le |\alpha| \|x_n - x\| + |\alpha_n - \alpha| \|x_n\| \to 0</tex>. | |
+ | }} | ||
Примеры НП: | Примеры НП: | ||
− | * | + | * <tex>X = \mathbb{R}^n, \| \overline x \| = \sqrt {\sum\limits_{k = 1}^{n} x_k^2}</tex> |
− | * | + | * <tex>X = C[a; b]</tex> — пространство непрерывных на <tex>[a; b]</tex> функций, <tex>\| f \| = \max\limits_{x \in [a; b]} |f(x)|</tex> |
− | * | + | * <tex>X = L_p</tex> — пространство функций, интегрируемых на множестве <tex> E </tex> с <tex> p </tex> степенью ,<tex>\| f \| = \left( \int\limits_E |f(x)|^p d \mu \right)^{1 \over p}</tex>. В таком пространстве отождествленны функции, различающиеся на множестве меры ноль, иначе, например, интеграл функции, почти везде равной нулю, будет нулевым, хотя сама функция ненулевая, что нарушит первую аксиому нормы. |
+ | * <tex>X = \ell_p</tex> — пространство числовых последовательностей, суммируемых с <tex>p</tex>-й степенью, норму можно ввести как <tex>\|x\|_p = { \left( \sum\limits_{n=1}^{\infty} |x_n|^p \right) }^{1 \over p}</tex> | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Нормированное пространство | + | Нормированное пространство <tex>(X, \|\cdot\|)</tex> называется '''B-пространством (Банаховым)''', если для любой последовательности элементов <tex>X</tex>, для которых из <tex>\|x_n - x_m\| \to 0</tex> при <tex>n, m \to \infty</tex> вытекает существование предела последовательности. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Нормы | + | Нормы <tex>\|\cdot \|_1</tex>, <tex>\|\cdot \|_2</tex> '''эквивалентны''', если сходимость в них равносильна: <tex>\forall \{x_n\}: x_n \xrightarrow[]{\|\|_1} x \iff x_n \xrightarrow[]{\|\|_2} x</tex>. |
+ | }} | ||
+ | Очевидно, что отношение эквивалентности норм является отношением эквивалентности (то есть, выполняются рефлексивность, симметричность и транзитивность). | ||
+ | |||
+ | {{Утверждение | ||
+ | |statement= | ||
+ | Нормы <tex>\|\cdot \|_1</tex>, <tex>\|\cdot \|_2</tex> эквивалентны <tex> \iff </tex> существуют константы <tex>m, M > 0</tex> такие, что <tex>\forall x: m\|x\|_2 \le \|x\|_1 \le M \|x\|_2</tex>. | ||
+ | |proof= | ||
+ | |||
+ | Несложно показать, что из взаимной ограниченности норм следует равносходимость: | ||
+ | |||
+ | <tex> x_n \xrightarrow[]{\|\|_1} x \implies \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_1 < \varepsilon \implies </tex> <tex> \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_2 < \frac \varepsilon m \implies x_n \xrightarrow[]{\|\|_2} x</tex>; | ||
+ | |||
+ | <tex> x_n \xrightarrow[]{\|\|_2} x \implies \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_2 < \varepsilon \implies </tex> <tex> \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_1 < M \varepsilon \implies x_n \xrightarrow[]{\|\|_1} x</tex>. | ||
+ | |||
+ | Теперь убедимся, что без взаимной ограниченности равносходимости также не будет: | ||
+ | |||
+ | Так как ее нет, то не существует, например, необходимой константы <tex> M </tex>. Значит, существует последовательность <tex> x_n: \|x_n\|_1 > n \|x_n\|_2 </tex>. | ||
+ | |||
+ | Рассмотрим тогда последовательность <tex> \frac {x_n}{\|x_n\|_1} </tex>. | ||
+ | |||
+ | В норме <tex> \|\cdot\|_2 </tex> она будет сходиться к нулю: <tex> \| \frac {x_n}{\|x_n\|_1} \|_2 < \|\frac {x_n}{n\|x_n\|_2}\|_2 = \frac1n \frac{\|x_n\|_2}{\|x_n\|_2} = \frac1n \xrightarrow[n \to \infty]{} 0 </tex>. | ||
+ | |||
+ | Но в <tex> \|\cdot\|_1 </tex> каждый элемент имеет норму <tex> \| \frac {x_n}{\|x_n\|_1} \|_1 = \frac {\|x_n\|_1}{\|x_n\|_1} = 1 \ne \|0\|_1</tex>, то есть, последовательность <tex> x_n </tex> к нулю в этой норме не сходится, что и требовалось доказать. | ||
}} | }} | ||
− | + | {{Определение | |
+ | |definition= | ||
+ | Пространство <tex> X </tex> '''конечномерно''', если <tex> \exists n = dim X < \infty: \exists e_1, e_2, \ldots, e_n: X = \mathcal L(e_1, \ldots, e_n)</tex>. | ||
+ | }} | ||
{{Теорема | {{Теорема | ||
|author=Рисс | |author=Рисс | ||
+ | |id=riesz | ||
|statement= | |statement= | ||
В конечномерных пространствах любые две нормы эквивалентны. | В конечномерных пространствах любые две нормы эквивалентны. | ||
|proof= | |proof= | ||
− | + | Докажем, что произвольная норма <tex>\| \|</tex> в конечномерном пространстве <tex>X</tex> эквивалентна <tex>\| \|_2</tex>, то есть выберем <tex>m, M >0: \forall x \in X: m \|x\|_2 \le \|x\| \le M \|x\|_2</tex>, далее по отношению эквивалентности получим эквивалентность произвольной норме. | |
+ | |||
+ | Выберем и зафиксируем в пространстве <tex>X</tex> произвольный базис <tex>(e_1 \dots e_n)</tex>. | ||
+ | |||
+ | 1. <tex>x = \sum\limits_{k=1}^n \alpha_k e_k</tex>, <tex>\| x \| \le \sum\limits_{k=1}^n |\alpha_k| \| e_k \| \le </tex> (по [[Неравенства Гёльдера, Минковского#Теорема Минковского|неравенству Коши для сумм]]) <tex> \le \sqrt{\sum\limits_{k=1}^n |\alpha_k|^2} \sqrt{\sum\limits_{k=1}^n \| e_k \|^2}</tex>. Заметим, что <tex>\sqrt{\sum\limits_{k=1}^n |\alpha_k|^2}</tex> является нормой <tex>\| \|_2</tex> в координатной записи, а <tex>\sqrt{\sum\limits_{k=1}^n \| e_k \|^2}</tex> является константным значением для фиксированного базиса. | ||
+ | |||
+ | Таким образом, получили <tex>\forall x \in X: \|x\| \le M \|x\|_2</tex>. | ||
+ | |||
+ | 2. Теперь надо доказать, что <tex>\exists m \forall x: m \|x\|_2 \le \|x\|</tex> | ||
+ | |||
+ | Рассмотрим единичный шар по норме <tex>\| \|_2</tex>: <tex>S_2 = \{ \overline \alpha \mid \| \overline \alpha \|_2 = 1 \}</tex>, <tex>S_2</tex> является компактом в <tex>\mathbb{R}^n</tex>, воспользуемся [[Теорема_Хаусдорфа_об_ε-сетях | теоремой Хаусдорфа]] и покажем: | ||
+ | * замкнутость: возьмем последовательность, пусть она сходится не к элементу единичной сферы, тогда с какого-то члена элементы последовательности тоже окажутся с нормой, не равной 1. | ||
+ | * вполне ограниченность: пусть нам дали какой-то <tex>\varepsilon</tex>, заметим что норма <tex>\|\|_2</tex> — самое обычная длина вектора, возьмем и сделаем в параллелепипеде <tex>[0; 1]^n</tex> n-мерную сетку с шагом <tex>\frac{\varepsilon}{\sqrt n}</tex>, которая и будет центрами шаров радиусом эпсилон, тогда любая точка в параллелепипеде точно будет покрыта каким-то шаром | ||
+ | |||
+ | Рассмотрим на нем функцию <tex>f : S_2 \to \mathbb{R}</tex>, <tex>f(x) = \|x\| = \| \sum \alpha_i e_i \|</tex>. Покажем, что она непрерывна. | ||
+ | |||
+ | Покажем, что <tex>|f(\alpha_1 + \Delta \alpha_1 \dots \alpha_n + \Delta \alpha_n) - f(\alpha_1 \dots \alpha_n)| \le \sum |\Delta \alpha_k | \| e_k \|</tex>. Раскроем двумя способами модуль. | ||
+ | * <tex> \|\alpha+\Delta\alpha\|-\|\alpha\|\ge0 </tex> <tex>\implies </tex> <tex>\|\alpha+\Delta\alpha\|-\|\alpha\|\le\|\alpha\| + \|\Delta\alpha\|-\|\alpha\| = \|\Delta\alpha\|</tex> | ||
+ | * <tex> \|\alpha+\Delta\alpha\|-\|\alpha\|<0 </tex> <tex>\implies </tex> <tex>\|\alpha\|-\|\alpha+\Delta\alpha\|</tex><tex>= \|\alpha+\Delta\alpha-\Delta\alpha\| - \|\alpha+\Delta\alpha\|</tex><tex>\le \|\alpha+\Delta\alpha\| + \|\Delta\alpha\| - \|\alpha+\Delta\alpha\|</tex><tex> = \|\Delta\alpha\|</tex> | ||
+ | |||
+ | По свойствам нормы, <tex>\|\Delta\alpha\| = \|\sum \Delta\alpha_k e_k\| \le \sum \|\Delta\alpha_ke_k\| = \sum |\Delta\alpha_k| \|e_k\|</tex> | ||
+ | |||
+ | <tex>|f(\alpha_1 + \Delta \alpha_1 \dots \alpha_n + \Delta \alpha_n) - f(\alpha_1 \dots \alpha_n)| \le \sum |\Delta \alpha_k | \| e_k \| \le M \sqrt{\sum (\Delta \alpha_k )^2}</tex>, то есть при стремлении <tex>\Delta \alpha_k </tex> к <tex>0</tex>, расстояние между <tex>f(\overline \alpha)</tex> и <tex>f(\overline \alpha + \Delta \overline \alpha)</tex> также стремится к нулю, что означает непрерывность. | ||
+ | |||
+ | Так как <tex>f</tex> непрерывна на <tex>S_2</tex>, то по [[Предел_отображения_в_метрическом_пространстве#Равномерно непрерывные отображения|теореме Вейерштрасса]] она принимает минимум на этом компакте, равный <tex>m</tex> (пусть он достигается в точке <tex>\overline \alpha^*</tex>). Также <tex>f</tex> не может быть нулем на <tex>S_2</tex>: пусть для какого-то <tex>x \in S_2</tex> это так, тогда <tex>\|x\| = 0 \implies \| \sum \alpha_k e_k \| = 0 \implies \alpha_k e_k = 0 \implies \forall k: \alpha_k = 0 \implies \|x\|_2 = 0</tex>, что означает, что <tex>x \notin S_2</tex>, то есть <tex>m > 0</tex>. | ||
+ | |||
+ | Теперь рассмотрим произвольный ненулевой <tex>x \in \mathbb{R}^n</tex>, тогда точка <tex>x' = {x \over \|x\|_2}</tex> также принадлежит <tex>\mathbb{R}^n</tex> по линейности пространства, и в частности, принадлежит <tex>S_2</tex>. Рассмотрим <tex>x'</tex>: <tex> f(x') = \|x'\| = \| {x \over {\| x \|_2}} \| = {{\| x \|} \over {\| x \|_2}} \ge m</tex>, то есть <tex>m \| x \|_2 \le \|x\|</tex>. | ||
+ | |||
+ | Таким образом, получили обе части двойного неравенства. | ||
}} | }} | ||
− | + | {{Определение | |
− | + | |definition=Подпространство в алгебраическом смысле не обязательно замкнуто в исходном пространстве. Поэтому в функциональном анализе собственно '''подпространством''' называется именно ''замкнутое'' подпространство, а ''алгебраические'' подпространства называют '''линейными подмножествами'''. | |
− | + | }} | |
{{Теорема | {{Теорема | ||
− | |||
− | |||
|statement= | |statement= | ||
− | + | Пусть <tex>X</tex> — НП и <tex>Y</tex> — линейное конечномерное подмножество в <tex>X</tex>, тогда <tex>Y</tex> — замкнуто в <tex>X</tex>, т.е. | |
+ | <tex>\mathrm{Cl} Y = Y</tex>. | ||
|proof= | |proof= | ||
− | + | Пусть для произвольного <tex>y \in X</tex>, <tex>y_m \in Y, y_m \to y, Y = \mathcal L(e_1, \ldots, e_n), \|\cdot\|</tex> --- исходная норма. | |
− | }} | + | |
− | + | Пусть <tex>\|\cdot\|_2 = \max\{|\alpha_1|, \ldots, |\alpha_n|\}</tex>. | |
+ | |||
+ | По теореме Рисса, нормы <tex>\|\cdot\|</tex> и <tex>\|\cdot\|_2</tex> в <tex>Y</tex> эквивалентны; в <tex>\|\cdot\|_2</tex>, очевидно, есть покоординатная сходимость. | ||
+ | |||
+ | <tex>\|y_m - y\| \to 0 \implies \|y_m - y\|_2 \to 0</tex>; так как <tex> y_m </tex> сходится, то <tex> y_m </tex> сходится в себе по <tex> \|\cdot\|_2 </tex>. | ||
+ | |||
+ | Вследствие покоординатной сходимости, <tex>\forall k = 1, \ldots, n: \alpha_k^{(p)} - \alpha_k^{(m)} \to 0</tex>. | ||
+ | |||
+ | По полноте вещественной оси, все <tex>n</tex> последовательностей сходятся: <tex>\forall k = 1, \ldots, n: \alpha_k^{(p)} \to \alpha_k^*</tex>. | ||
+ | |||
+ | Возьмем <tex> y^* = \sum\limits_{k=1}^{n} \alpha_k^* e_k </tex>. По единственности предела, <tex> y^* = y </tex>. | ||
+ | |||
+ | Значит, <tex>y = \sum\limits_{k=1}^{n} \alpha_k^* e_k</tex>, <tex>y \in Y</tex> и <tex>Y = \mathrm{Cl} Y</tex>.}} | ||
+ | |||
+ | Пример: <tex> X = C[0; 1]</tex>, <tex>Y</tex> — пространство всех полиномов степени не выше <tex> n </tex>. Очевидно, <tex> Y </tex> конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из <tex> Y </tex>, то ее пределом будет также полином из <tex> Y </tex>. Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математического анализа получается очень непросто. Однако, если степень полиномов в <tex>Y</tex> не ограничивать, то замыканием <tex>Y</tex> будет все пространство <tex>X</tex>, по [[Приближение_непрерывной_функции_полиномами_на_отрезке | теореме Вейерштрасса]], любую непрерывную на отрезке функцию можно приблизить полиномами. | ||
+ | |||
+ | == Ссылки == | ||
* [http://en.wikipedia.org/wiki/Vector_space Vector space] | * [http://en.wikipedia.org/wiki/Vector_space Vector space] | ||
* [http://en.wikipedia.org/wiki/Norm_(mathematics) Norm] | * [http://en.wikipedia.org/wiki/Norm_(mathematics) Norm] | ||
− | + | [[Категория: Функциональный анализ 3 курс]] |
Текущая версия на 19:10, 4 сентября 2022
Определение: |
Линейное (векторное) пространство над полем
| — это множество с заданными на нем операциями сложениями и умножения на скаляр такими, что:
Определение: |
Функция
| называется нормой в пространстве , если для нее выполняется:
Заметим, что любое нормированное пространство можно превратить в метрическое, задав метрику как . Заметим, что обратное неверно: например, хоть c и можно наделить линейной структурой, не существует нормы, аналогичной по сходимости с этой метрикой.
Утверждение: |
В нормированных пространствах линейные операции непрерывны. |
Пусть .Тогда , так как . , так как . |
Примеры НП:
- — пространство непрерывных на функций,
- — пространство функций, интегрируемых на множестве с степенью , . В таком пространстве отождествленны функции, различающиеся на множестве меры ноль, иначе, например, интеграл функции, почти везде равной нулю, будет нулевым, хотя сама функция ненулевая, что нарушит первую аксиому нормы.
- — пространство числовых последовательностей, суммируемых с -й степенью, норму можно ввести как
Определение: |
Нормированное пространство | называется B-пространством (Банаховым), если для любой последовательности элементов , для которых из при вытекает существование предела последовательности.
Определение: |
Нормы | , эквивалентны, если сходимость в них равносильна: .
Очевидно, что отношение эквивалентности норм является отношением эквивалентности (то есть, выполняются рефлексивность, симметричность и транзитивность).
Утверждение: |
Нормы , эквивалентны существуют константы такие, что . |
Несложно показать, что из взаимной ограниченности норм следует равносходимость: ; . Теперь убедимся, что без взаимной ограниченности равносходимости также не будет: Так как ее нет, то не существует, например, необходимой константы . Значит, существует последовательность .Рассмотрим тогда последовательность .В норме Но в она будет сходиться к нулю: . каждый элемент имеет норму , то есть, последовательность к нулю в этой норме не сходится, что и требовалось доказать. |
Определение: |
Пространство | конечномерно, если .
Теорема (Рисс): |
В конечномерных пространствах любые две нормы эквивалентны. |
Доказательство: |
Докажем, что произвольная норма в конечномерном пространстве эквивалентна , то есть выберем , далее по отношению эквивалентности получим эквивалентность произвольной норме.Выберем и зафиксируем в пространстве произвольный базис .1. неравенству Коши для сумм) . Заметим, что является нормой в координатной записи, а является константным значением для фиксированного базиса. , (поТаким образом, получили .2. Теперь надо доказать, что Рассмотрим единичный шар по норме теоремой Хаусдорфа и покажем: : , является компактом в , воспользуемся
Рассмотрим на нем функцию , . Покажем, что она непрерывна.Покажем, что . Раскроем двумя способами модуль.По свойствам нормы, , то есть при стремлении к , расстояние между и также стремится к нулю, что означает непрерывность. Так как теореме Вейерштрасса она принимает минимум на этом компакте, равный (пусть он достигается в точке ). Также не может быть нулем на : пусть для какого-то это так, тогда , что означает, что , то есть . непрерывна на , то поТеперь рассмотрим произвольный ненулевой Таким образом, получили обе части двойного неравенства. , тогда точка также принадлежит по линейности пространства, и в частности, принадлежит . Рассмотрим : , то есть . |
Определение: |
Подпространство в алгебраическом смысле не обязательно замкнуто в исходном пространстве. Поэтому в функциональном анализе собственно подпространством называется именно замкнутое подпространство, а алгебраические подпространства называют линейными подмножествами. |
Теорема: |
Пусть — НП и — линейное конечномерное подмножество в , тогда — замкнуто в , т.е.
. |
Доказательство: |
Пусть для произвольного , --- исходная норма.Пусть .По теореме Рисса, нормы и в эквивалентны; в , очевидно, есть покоординатная сходимость.; так как сходится, то сходится в себе по . Вследствие покоординатной сходимости, .По полноте вещественной оси, все последовательностей сходятся: .Возьмем Значит, . По единственности предела, . , и . |
Пример: теореме Вейерштрасса, любую непрерывную на отрезке функцию можно приблизить полиномами.
, — пространство всех полиномов степени не выше . Очевидно, конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из , то ее пределом будет также полином из . Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математического анализа получается очень непросто. Однако, если степень полиномов в не ограничивать, то замыканием будет все пространство , по