Нормированные пространства (3 курс) — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 17 промежуточных версий 10 участников) | |||
Строка 1: | Строка 1: | ||
− | |||
− | |||
{{Определение | {{Определение | ||
|id=defvs | |id=defvs | ||
Строка 21: | Строка 19: | ||
|definition= | |definition= | ||
Функция <tex>\| \cdot \|: L \to \mathbb{R}</tex> называется нормой в пространстве <tex>L</tex>, если для нее выполняется: | Функция <tex>\| \cdot \|: L \to \mathbb{R}</tex> называется нормой в пространстве <tex>L</tex>, если для нее выполняется: | ||
− | # <tex>\forall x \in L: \| x \| \ge 0</tex>, <tex>\| x \| = 0 \ | + | # <tex>\forall x \in L: \| x \| \ge 0</tex>, <tex>\| x \| = 0 \iff x = \mathrm{0}</tex> |
# <tex>\forall \alpha \in \mathbb{R}\ \forall x \in L: \| \alpha x \| = |\alpha |\| x \|</tex> | # <tex>\forall \alpha \in \mathbb{R}\ \forall x \in L: \| \alpha x \| = |\alpha |\| x \|</tex> | ||
# <tex>\forall x, y \in L: \| x + y \| \le \| x \| + \| y \|</tex> | # <tex>\forall x, y \in L: \| x + y \| \le \| x \| + \| y \|</tex> | ||
Строка 35: | Строка 33: | ||
Пусть <tex> x_n \to x , y_n \to y, \alpha_n \to \alpha</tex>. | Пусть <tex> x_n \to x , y_n \to y, \alpha_n \to \alpha</tex>. | ||
− | Тогда <tex> x_n + y_n \to x + y </tex>, так как <tex> \|(x_n + y_n) - (x + y)\| \le \|x_n | + | Тогда <tex> x_n + y_n \to x + y </tex>, так как <tex> \|(x_n + y_n) - (x + y)\| \le \|x_n - x\| + \|y_n - y\| \to 0</tex>. |
<tex> \alpha_n x_n \to \alpha x </tex>, так как <tex> \|\alpha_n x_n - \alpha x\| = \|\alpha(x_n - x) + (\alpha_n - \alpha) x_n\| \le |\alpha| \|x_n - x\| + |\alpha_n - \alpha| \|x_n\| \to 0</tex>. | <tex> \alpha_n x_n \to \alpha x </tex>, так как <tex> \|\alpha_n x_n - \alpha x\| = \|\alpha(x_n - x) + (\alpha_n - \alpha) x_n\| \le |\alpha| \|x_n - x\| + |\alpha_n - \alpha| \|x_n\| \to 0</tex>. | ||
Строка 44: | Строка 42: | ||
* <tex>X = C[a; b]</tex> — пространство непрерывных на <tex>[a; b]</tex> функций, <tex>\| f \| = \max\limits_{x \in [a; b]} |f(x)|</tex> | * <tex>X = C[a; b]</tex> — пространство непрерывных на <tex>[a; b]</tex> функций, <tex>\| f \| = \max\limits_{x \in [a; b]} |f(x)|</tex> | ||
* <tex>X = L_p</tex> — пространство функций, интегрируемых на множестве <tex> E </tex> с <tex> p </tex> степенью ,<tex>\| f \| = \left( \int\limits_E |f(x)|^p d \mu \right)^{1 \over p}</tex>. В таком пространстве отождествленны функции, различающиеся на множестве меры ноль, иначе, например, интеграл функции, почти везде равной нулю, будет нулевым, хотя сама функция ненулевая, что нарушит первую аксиому нормы. | * <tex>X = L_p</tex> — пространство функций, интегрируемых на множестве <tex> E </tex> с <tex> p </tex> степенью ,<tex>\| f \| = \left( \int\limits_E |f(x)|^p d \mu \right)^{1 \over p}</tex>. В таком пространстве отождествленны функции, различающиеся на множестве меры ноль, иначе, например, интеграл функции, почти везде равной нулю, будет нулевым, хотя сама функция ненулевая, что нарушит первую аксиому нормы. | ||
+ | * <tex>X = \ell_p</tex> — пространство числовых последовательностей, суммируемых с <tex>p</tex>-й степенью, норму можно ввести как <tex>\|x\|_p = { \left( \sum\limits_{n=1}^{\infty} |x_n|^p \right) }^{1 \over p}</tex> | ||
{{Определение | {{Определение | ||
Строка 52: | Строка 51: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Нормы <tex>\| \|_1</tex>, <tex>\| \|_2</tex> '''эквивалентны''', если | + | Нормы <tex>\|\cdot \|_1</tex>, <tex>\|\cdot \|_2</tex> '''эквивалентны''', если сходимость в них равносильна: <tex>\forall \{x_n\}: x_n \xrightarrow[]{\|\|_1} x \iff x_n \xrightarrow[]{\|\|_2} x</tex>. |
}} | }} | ||
+ | Очевидно, что отношение эквивалентности норм является отношением эквивалентности (то есть, выполняются рефлексивность, симметричность и транзитивность). | ||
+ | |||
+ | {{Утверждение | ||
+ | |statement= | ||
+ | Нормы <tex>\|\cdot \|_1</tex>, <tex>\|\cdot \|_2</tex> эквивалентны <tex> \iff </tex> существуют константы <tex>m, M > 0</tex> такие, что <tex>\forall x: m\|x\|_2 \le \|x\|_1 \le M \|x\|_2</tex>. | ||
+ | |proof= | ||
+ | |||
+ | Несложно показать, что из взаимной ограниченности норм следует равносходимость: | ||
+ | |||
+ | <tex> x_n \xrightarrow[]{\|\|_1} x \implies \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_1 < \varepsilon \implies </tex> <tex> \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_2 < \frac \varepsilon m \implies x_n \xrightarrow[]{\|\|_2} x</tex>; | ||
+ | |||
+ | <tex> x_n \xrightarrow[]{\|\|_2} x \implies \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_2 < \varepsilon \implies </tex> <tex> \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_1 < M \varepsilon \implies x_n \xrightarrow[]{\|\|_1} x</tex>. | ||
+ | |||
+ | Теперь убедимся, что без взаимной ограниченности равносходимости также не будет: | ||
+ | |||
+ | Так как ее нет, то не существует, например, необходимой константы <tex> M </tex>. Значит, существует последовательность <tex> x_n: \|x_n\|_1 > n \|x_n\|_2 </tex>. | ||
− | + | Рассмотрим тогда последовательность <tex> \frac {x_n}{\|x_n\|_1} </tex>. | |
+ | |||
+ | В норме <tex> \|\cdot\|_2 </tex> она будет сходиться к нулю: <tex> \| \frac {x_n}{\|x_n\|_1} \|_2 < \|\frac {x_n}{n\|x_n\|_2}\|_2 = \frac1n \frac{\|x_n\|_2}{\|x_n\|_2} = \frac1n \xrightarrow[n \to \infty]{} 0 </tex>. | ||
+ | |||
+ | Но в <tex> \|\cdot\|_1 </tex> каждый элемент имеет норму <tex> \| \frac {x_n}{\|x_n\|_1} \|_1 = \frac {\|x_n\|_1}{\|x_n\|_1} = 1 \ne \|0\|_1</tex>, то есть, последовательность <tex> x_n </tex> к нулю в этой норме не сходится, что и требовалось доказать. | ||
+ | }} | ||
{{Определение | {{Определение | ||
Строка 64: | Строка 84: | ||
{{Теорема | {{Теорема | ||
|author=Рисс | |author=Рисс | ||
+ | |id=riesz | ||
|statement= | |statement= | ||
В конечномерных пространствах любые две нормы эквивалентны. | В конечномерных пространствах любые две нормы эквивалентны. | ||
Строка 71: | Строка 92: | ||
Выберем и зафиксируем в пространстве <tex>X</tex> произвольный базис <tex>(e_1 \dots e_n)</tex>. | Выберем и зафиксируем в пространстве <tex>X</tex> произвольный базис <tex>(e_1 \dots e_n)</tex>. | ||
− | 1. <tex>x = \sum\limits_{k=1}^n \alpha_k e_k</tex>, <tex>\| x \| | + | 1. <tex>x = \sum\limits_{k=1}^n \alpha_k e_k</tex>, <tex>\| x \| \le \sum\limits_{k=1}^n |\alpha_k| \| e_k \| \le </tex> (по [[Неравенства Гёльдера, Минковского#Теорема Минковского|неравенству Коши для сумм]]) <tex> \le \sqrt{\sum\limits_{k=1}^n |\alpha_k|^2} \sqrt{\sum\limits_{k=1}^n \| e_k \|^2}</tex>. Заметим, что <tex>\sqrt{\sum\limits_{k=1}^n |\alpha_k|^2}</tex> является нормой <tex>\| \|_2</tex> в координатной записи, а <tex>\sqrt{\sum\limits_{k=1}^n \| e_k \|^2}</tex> является константным значением для фиксированного базиса. |
Таким образом, получили <tex>\forall x \in X: \|x\| \le M \|x\|_2</tex>. | Таким образом, получили <tex>\forall x \in X: \|x\| \le M \|x\|_2</tex>. | ||
Строка 77: | Строка 98: | ||
2. Теперь надо доказать, что <tex>\exists m \forall x: m \|x\|_2 \le \|x\|</tex> | 2. Теперь надо доказать, что <tex>\exists m \forall x: m \|x\|_2 \le \|x\|</tex> | ||
− | Рассмотрим единичный шар по норме <tex>\| \|_2</tex>: <tex>S_2 = \{ \overline \alpha \mid \| \overline \alpha \|_2 = 1 \}</tex>, <tex>S_2</tex> является компактом в <tex>\mathbb{R}^n</tex> | + | Рассмотрим единичный шар по норме <tex>\| \|_2</tex>: <tex>S_2 = \{ \overline \alpha \mid \| \overline \alpha \|_2 = 1 \}</tex>, <tex>S_2</tex> является компактом в <tex>\mathbb{R}^n</tex>, воспользуемся [[Теорема_Хаусдорфа_об_ε-сетях | теоремой Хаусдорфа]] и покажем: |
− | + | * замкнутость: возьмем последовательность, пусть она сходится не к элементу единичной сферы, тогда с какого-то члена элементы последовательности тоже окажутся с нормой, не равной 1. | |
+ | * вполне ограниченность: пусть нам дали какой-то <tex>\varepsilon</tex>, заметим что норма <tex>\|\|_2</tex> — самое обычная длина вектора, возьмем и сделаем в параллелепипеде <tex>[0; 1]^n</tex> n-мерную сетку с шагом <tex>\frac{\varepsilon}{\sqrt n}</tex>, которая и будет центрами шаров радиусом эпсилон, тогда любая точка в параллелепипеде точно будет покрыта каким-то шаром | ||
− | Так как <tex>f</tex> непрерывна на <tex>S_2</tex>, то по [[Предел_отображения_в_метрическом_пространстве#Равномерно непрерывные отображения|теореме Вейерштрасса]] она принимает минимум на этом компакте, равный <tex>m</tex> (пусть он достигается в точке <tex>\overline \alpha^*</tex>). Также <tex>f</tex> не может быть нулем на <tex>S_2</tex>: пусть для какого-то <tex>x \in S_2</tex> это так, | + | Рассмотрим на нем функцию <tex>f : S_2 \to \mathbb{R}</tex>, <tex>f(x) = \|x\| = \| \sum \alpha_i e_i \|</tex>. Покажем, что она непрерывна. |
+ | |||
+ | Покажем, что <tex>|f(\alpha_1 + \Delta \alpha_1 \dots \alpha_n + \Delta \alpha_n) - f(\alpha_1 \dots \alpha_n)| \le \sum |\Delta \alpha_k | \| e_k \|</tex>. Раскроем двумя способами модуль. | ||
+ | * <tex> \|\alpha+\Delta\alpha\|-\|\alpha\|\ge0 </tex> <tex>\implies </tex> <tex>\|\alpha+\Delta\alpha\|-\|\alpha\|\le\|\alpha\| + \|\Delta\alpha\|-\|\alpha\| = \|\Delta\alpha\|</tex> | ||
+ | * <tex> \|\alpha+\Delta\alpha\|-\|\alpha\|<0 </tex> <tex>\implies </tex> <tex>\|\alpha\|-\|\alpha+\Delta\alpha\|</tex><tex>= \|\alpha+\Delta\alpha-\Delta\alpha\| - \|\alpha+\Delta\alpha\|</tex><tex>\le \|\alpha+\Delta\alpha\| + \|\Delta\alpha\| - \|\alpha+\Delta\alpha\|</tex><tex> = \|\Delta\alpha\|</tex> | ||
+ | |||
+ | По свойствам нормы, <tex>\|\Delta\alpha\| = \|\sum \Delta\alpha_k e_k\| \le \sum \|\Delta\alpha_ke_k\| = \sum |\Delta\alpha_k| \|e_k\|</tex> | ||
+ | |||
+ | <tex>|f(\alpha_1 + \Delta \alpha_1 \dots \alpha_n + \Delta \alpha_n) - f(\alpha_1 \dots \alpha_n)| \le \sum |\Delta \alpha_k | \| e_k \| \le M \sqrt{\sum (\Delta \alpha_k )^2}</tex>, то есть при стремлении <tex>\Delta \alpha_k </tex> к <tex>0</tex>, расстояние между <tex>f(\overline \alpha)</tex> и <tex>f(\overline \alpha + \Delta \overline \alpha)</tex> также стремится к нулю, что означает непрерывность. | ||
+ | |||
+ | Так как <tex>f</tex> непрерывна на <tex>S_2</tex>, то по [[Предел_отображения_в_метрическом_пространстве#Равномерно непрерывные отображения|теореме Вейерштрасса]] она принимает минимум на этом компакте, равный <tex>m</tex> (пусть он достигается в точке <tex>\overline \alpha^*</tex>). Также <tex>f</tex> не может быть нулем на <tex>S_2</tex>: пусть для какого-то <tex>x \in S_2</tex> это так, тогда <tex>\|x\| = 0 \implies \| \sum \alpha_k e_k \| = 0 \implies \alpha_k e_k = 0 \implies \forall k: \alpha_k = 0 \implies \|x\|_2 = 0</tex>, что означает, что <tex>x \notin S_2</tex>, то есть <tex>m > 0</tex>. | ||
Теперь рассмотрим произвольный ненулевой <tex>x \in \mathbb{R}^n</tex>, тогда точка <tex>x' = {x \over \|x\|_2}</tex> также принадлежит <tex>\mathbb{R}^n</tex> по линейности пространства, и в частности, принадлежит <tex>S_2</tex>. Рассмотрим <tex>x'</tex>: <tex> f(x') = \|x'\| = \| {x \over {\| x \|_2}} \| = {{\| x \|} \over {\| x \|_2}} \ge m</tex>, то есть <tex>m \| x \|_2 \le \|x\|</tex>. | Теперь рассмотрим произвольный ненулевой <tex>x \in \mathbb{R}^n</tex>, тогда точка <tex>x' = {x \over \|x\|_2}</tex> также принадлежит <tex>\mathbb{R}^n</tex> по линейности пространства, и в частности, принадлежит <tex>S_2</tex>. Рассмотрим <tex>x'</tex>: <tex> f(x') = \|x'\| = \| {x \over {\| x \|_2}} \| = {{\| x \|} \over {\| x \|_2}} \ge m</tex>, то есть <tex>m \| x \|_2 \le \|x\|</tex>. | ||
Строка 98: | Строка 130: | ||
Пусть для произвольного <tex>y \in X</tex>, <tex>y_m \in Y, y_m \to y, Y = \mathcal L(e_1, \ldots, e_n), \|\cdot\|</tex> --- исходная норма. | Пусть для произвольного <tex>y \in X</tex>, <tex>y_m \in Y, y_m \to y, Y = \mathcal L(e_1, \ldots, e_n), \|\cdot\|</tex> --- исходная норма. | ||
− | <tex> | + | Пусть <tex>\|\cdot\|_2 = \max\{|\alpha_1|, \ldots, |\alpha_n|\}</tex>. |
По теореме Рисса, нормы <tex>\|\cdot\|</tex> и <tex>\|\cdot\|_2</tex> в <tex>Y</tex> эквивалентны; в <tex>\|\cdot\|_2</tex>, очевидно, есть покоординатная сходимость. | По теореме Рисса, нормы <tex>\|\cdot\|</tex> и <tex>\|\cdot\|_2</tex> в <tex>Y</tex> эквивалентны; в <tex>\|\cdot\|_2</tex>, очевидно, есть покоординатная сходимость. | ||
− | + | <tex>\|y_m - y\| \to 0 \implies \|y_m - y\|_2 \to 0</tex>; так как <tex> y_m </tex> сходится, то <tex> y_m </tex> сходится в себе по <tex> \|\cdot\|_2 </tex>. | |
Вследствие покоординатной сходимости, <tex>\forall k = 1, \ldots, n: \alpha_k^{(p)} - \alpha_k^{(m)} \to 0</tex>. | Вследствие покоординатной сходимости, <tex>\forall k = 1, \ldots, n: \alpha_k^{(p)} - \alpha_k^{(m)} \to 0</tex>. | ||
Строка 108: | Строка 140: | ||
По полноте вещественной оси, все <tex>n</tex> последовательностей сходятся: <tex>\forall k = 1, \ldots, n: \alpha_k^{(p)} \to \alpha_k^*</tex>. | По полноте вещественной оси, все <tex>n</tex> последовательностей сходятся: <tex>\forall k = 1, \ldots, n: \alpha_k^{(p)} \to \alpha_k^*</tex>. | ||
− | + | Возьмем <tex> y^* = \sum\limits_{k=1}^{n} \alpha_k^* e_k </tex>. По единственности предела, <tex> y^* = y </tex>. | |
+ | |||
+ | Значит, <tex>y = \sum\limits_{k=1}^{n} \alpha_k^* e_k</tex>, <tex>y \in Y</tex> и <tex>Y = \mathrm{Cl} Y</tex>.}} | ||
− | Пример: <tex> X = C[0; 1]</tex>, <tex>Y</tex> — пространство всех полиномов степени не выше <tex> n </tex>. Очевидно, <tex> Y </tex> конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из <tex> Y </tex>, то ее пределом будет также полином из <tex> Y </tex>. Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математического анализа получается очень непросто. Однако, если степень полиномов в <tex>Y</tex> не ограничивать, то замыканием <tex>Y</tex> будет все пространство <tex>X</tex>, по [[Приближение_непрерывной_функции_полиномами_на_отрезке | теореме Вейерштрасса]] любую непрерывную на отрезке функцию можно приблизить полиномами. | + | Пример: <tex> X = C[0; 1]</tex>, <tex>Y</tex> — пространство всех полиномов степени не выше <tex> n </tex>. Очевидно, <tex> Y </tex> конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из <tex> Y </tex>, то ее пределом будет также полином из <tex> Y </tex>. Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математического анализа получается очень непросто. Однако, если степень полиномов в <tex>Y</tex> не ограничивать, то замыканием <tex>Y</tex> будет все пространство <tex>X</tex>, по [[Приближение_непрерывной_функции_полиномами_на_отрезке | теореме Вейерштрасса]], любую непрерывную на отрезке функцию можно приблизить полиномами. |
== Ссылки == | == Ссылки == |
Текущая версия на 19:10, 4 сентября 2022
Определение: |
Линейное (векторное) пространство над полем
| — это множество с заданными на нем операциями сложениями и умножения на скаляр такими, что:
Определение: |
Функция
| называется нормой в пространстве , если для нее выполняется:
Заметим, что любое нормированное пространство можно превратить в метрическое, задав метрику как . Заметим, что обратное неверно: например, хоть c и можно наделить линейной структурой, не существует нормы, аналогичной по сходимости с этой метрикой.
Утверждение: |
В нормированных пространствах линейные операции непрерывны. |
Пусть .Тогда , так как . , так как . |
Примеры НП:
- — пространство непрерывных на функций,
- — пространство функций, интегрируемых на множестве с степенью , . В таком пространстве отождествленны функции, различающиеся на множестве меры ноль, иначе, например, интеграл функции, почти везде равной нулю, будет нулевым, хотя сама функция ненулевая, что нарушит первую аксиому нормы.
- — пространство числовых последовательностей, суммируемых с -й степенью, норму можно ввести как
Определение: |
Нормированное пространство | называется B-пространством (Банаховым), если для любой последовательности элементов , для которых из при вытекает существование предела последовательности.
Определение: |
Нормы | , эквивалентны, если сходимость в них равносильна: .
Очевидно, что отношение эквивалентности норм является отношением эквивалентности (то есть, выполняются рефлексивность, симметричность и транзитивность).
Утверждение: |
Нормы , эквивалентны существуют константы такие, что . |
Несложно показать, что из взаимной ограниченности норм следует равносходимость: ; . Теперь убедимся, что без взаимной ограниченности равносходимости также не будет: Так как ее нет, то не существует, например, необходимой константы . Значит, существует последовательность .Рассмотрим тогда последовательность .В норме Но в она будет сходиться к нулю: . каждый элемент имеет норму , то есть, последовательность к нулю в этой норме не сходится, что и требовалось доказать. |
Определение: |
Пространство | конечномерно, если .
Теорема (Рисс): |
В конечномерных пространствах любые две нормы эквивалентны. |
Доказательство: |
Докажем, что произвольная норма в конечномерном пространстве эквивалентна , то есть выберем , далее по отношению эквивалентности получим эквивалентность произвольной норме.Выберем и зафиксируем в пространстве произвольный базис .1. неравенству Коши для сумм) . Заметим, что является нормой в координатной записи, а является константным значением для фиксированного базиса. , (поТаким образом, получили .2. Теперь надо доказать, что Рассмотрим единичный шар по норме теоремой Хаусдорфа и покажем: : , является компактом в , воспользуемся
Рассмотрим на нем функцию , . Покажем, что она непрерывна.Покажем, что . Раскроем двумя способами модуль.По свойствам нормы, , то есть при стремлении к , расстояние между и также стремится к нулю, что означает непрерывность. Так как теореме Вейерштрасса она принимает минимум на этом компакте, равный (пусть он достигается в точке ). Также не может быть нулем на : пусть для какого-то это так, тогда , что означает, что , то есть . непрерывна на , то поТеперь рассмотрим произвольный ненулевой Таким образом, получили обе части двойного неравенства. , тогда точка также принадлежит по линейности пространства, и в частности, принадлежит . Рассмотрим : , то есть . |
Определение: |
Подпространство в алгебраическом смысле не обязательно замкнуто в исходном пространстве. Поэтому в функциональном анализе собственно подпространством называется именно замкнутое подпространство, а алгебраические подпространства называют линейными подмножествами. |
Теорема: |
Пусть — НП и — линейное конечномерное подмножество в , тогда — замкнуто в , т.е.
. |
Доказательство: |
Пусть для произвольного , --- исходная норма.Пусть .По теореме Рисса, нормы и в эквивалентны; в , очевидно, есть покоординатная сходимость.; так как сходится, то сходится в себе по . Вследствие покоординатной сходимости, .По полноте вещественной оси, все последовательностей сходятся: .Возьмем Значит, . По единственности предела, . , и . |
Пример: теореме Вейерштрасса, любую непрерывную на отрезке функцию можно приблизить полиномами.
, — пространство всех полиномов степени не выше . Очевидно, конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из , то ее пределом будет также полином из . Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математического анализа получается очень непросто. Однако, если степень полиномов в не ограничивать, то замыканием будет все пространство , по