Изменения

Перейти к: навигация, поиск

Алгоритмы на деревьях

6479 байт добавлено, 19:11, 4 сентября 2022
м
rollbackEdits.php mass rollback
'''Диаметр дерева''' - максимальная длина кратчашего пути между любыми двумя вершинами.Алгоритм в этой статье находил диаметр в дереве,при чём очень простым алгоритмом.__TOC__
Алгоритм:== Диаметр дерева ==Возьмём любую вершину V и найдём расстояния до всех других вершин{{Определение|id = tree|definition ='''Диаметр дерева''' (англ.''diameter of a tree'') — максимальная длина (в рёбрах) кратчайшего пути в дереве между любыми двумя вершинами.}}
Пусть дан граф <tex>G = \langle V, E \rangle </tex>. Тогда диаметром <tex>d[v] = </tex> называется <tex>\max\limits_{u, v \in V, u \ne v} dist(v, u)</tex>, v)где <tex>dist</tex> — кратчайшее расстояние между вершинами.
=== Алгоритм ===* Возьмём любую вершину U такую,что d[u] <tex> v \in V </tex>= d[t] для любого t.Снова и найдём расстояние расстояния до всех остальных других вершин.Самое большое расстояние-диаметр дерева.Расстояние до остальных вершин удобно искать алгоритмом BFS.<tex>d[i] = dist(v, i)</tex>
Реализация:* Возьмём вершину <tex> u \in V </tex> такую, что <tex>d[u] \geqslant d[t]</tex> для любого <tex>t</tex>. Снова найдём расстояние от <tex>u</tex> до всех остальных вершин. Самое большое расстояние — диаметр дерева.Расстояние до остальных вершин будем искать [[Обход_в_ширину|алгоритмом <tex>BFS</tex>]].
=== Реализация === <span style="color:green">//граф g представлен списком смежности</span> '''int''' diameterTree('''list<list<int diameter>>''' g): v = u = w = 0 d = bfs(g, v) '''for''' i = 0, i < n, i++ '''if''' d[i] > d[u] u = i d = bfs(graph g, u) { '''for''' i = 0, i < n, i++ '''if''' d[i] > d[w] w = i '''return''' d[w]
bfs(int v) - заполняет массив d[n] расстояниями до всех вершин=== Обоснование корректности ===Будем пользоваться свойством, что в любом дереве больше одного листа. Исключительный случай — дерево из одной вершины, но алгоритм сработает верно и в этом случае.
v {{Теорема|statement= u Искомое расстояние — расстояние между двумя листами.|proof= w = 0;Пусть искомое расстояние — расстояние между вершинами <tex>a, b</tex>, где <tex>b</tex> не является листом. Так как <tex>b</tex> не является листом, то её степень больше единицы, следовательно, из неё существует ребро в непосещённую вершину (дважды посетить вершину <tex>b</tex> мы не можем).}}
bfs(v);После запуска алгоритма получим дерево <tex>BFS</tex>.
for(i {{Теорема|statement= 0; i В дереве < n; i++)tex>BFS</tex> не существует ребер между вершинами из разных поддеревьев некоторого их общего предка.|proof=Предположим, существует ребро <tex>u, v</tex> между соседними поддеревьями:Рассмотрим первую вершину, в которую приведет наш алгоритм, пусть это вершина <tex>u</tex>, тогда в ходе рассмотрения всех смежных вершин <tex>u</tex> мы добавим в список вершину <tex>v</tex>, тем самым исключив возможность попадания их в разные поддеревья.}}
if (d[i] > d[u])
u = i;Мы свели задачу к нахождению вершины <tex>w</tex>, такой что сумма глубин поддеревьев максимальна.
bfs(u);Докажем, что одно из искомых поддеревьев содержит самый глубокий лист. Пусть нет, тогда, взяв расстояние от <tex>w</tex> до глубочайшего листа, мы можем улучшить ответ.
forТаким образом мы доказали, что нам нужно взять вершину <tex>u</tex> с наибольшей глубиной после первого <tex>BFS</tex>, очевидно, что ей в пару надо сопоставить вершину <tex>w</tex>, такую что <tex>dist(i = 0; i u, w)< n; i++)/tex> максимально. Вершину <tex>w</tex> можно найти запуском <tex>BFS</tex> из <tex>u</tex>.
if === Оценка времени работы ===Все операции кроме <tex>BFS</tex> — <tex>O(d[i] 1)</tex> d[w].<tex>BFS</tex> работает за линейное время, запускаем мы его два раза. Получаем <tex>O(|V| + |E|)</tex>.
w = i;= Центр дерева ===== Определения ==={{Определение|id = tree|definition ='''Эксцентриситет вершины <tex>e(v)</tex>''' (англ. ''eccentricity of a vertex'') — <tex>\max\limits_{u\in V} dist(v, u)</tex>, где <tex>V</tex> — множество вершин связного графа <tex>G</tex>.}}{{Определение|id = tree|definition ='''Радиус <tex>r(G)</tex>''' (англ. ''radius'') — наименьший из эксцентриситетов вершин графа <tex>G</tex>.}}{{Определение|id = tree|definition ='''Центральная вершина''' (англ. ''central vertex'') — вершина графа <tex>G</tex>, такая что <tex>e(v) = r(G)</tex> }}{{Определение|id = tree|definition ='''Центр графа <tex>G</tex>''' (англ. ''center of a graph'') — множество всех центральных вершин графа <tex>G</tex>.}}[[Файл:Центральные_вершины.png|300px|thumb|left|Примеры деревьев с одной и двумя центральными вершинами]][[Файл:Эксцентриситеты.png|400px|thumb|center|Графы, у которых показан эксцентриситет каждой вершины]]
return d=== Алгоритм ======= Наивный алгоритм ====Найдём центр графа исходя из его определения.* Построим матрицу <tex>A_{n \times n}</tex> (<tex>n</tex> — мощность множества <tex>V</tex>), где <tex>a_{ij} = d_{ij}</tex>, то есть матрицу кратчайших путей. Для её построения можно воспользоваться [w[Алгоритм_Флойда|алгоритмом Флойда-Уоршелла]] или [[Алгоритм_Дейкстры|Дейкстры]];.* Подсчитаем максимум в каждой строчке матрицы <tex>A</tex>. Таким образом, получим массив длины <tex>n</tex>.* Найдём наименьший элемент в этом массиве. Эта вершина и есть центр графа. В том случае, когда вершин несколько, все они являются центрами. Асимптотика зависит от используемого способа подсчета кратчайших путей. При Флойде это будет <tex>O(V^3)</tex>, а при Дейкстре — максимум из асимптотики конкретной реализации Дейкстры и <tex>O(V^2)</tex>, за которую мы находим максимумы в матрице.
void dfs(int u) { visited[u] = true; //помечаем вершину как пройденную for (v таких, что (u, v) — ребро в G) //проходим по смежным с u вершинам if (!visited[v]) //проверяем, не находились ли мы ранее в выбранной вершине dfs(v); } int main() { ... //задание графа G с количеством вершин n. visited.assign=== Алгоритм для дерева за O(n, false); //в начале все вершины в графе ''не пройденные'' for (int i = 0; i < n; ++i) //проходим по всем вершинам графа... if (!visited[i]) //...не забыв проверить, были мы уже в очередной вершине или нет dfs(i); return 0; }===
{{Теорема
|statement=
Каждое дерево имеет центр, состоящий из одной вершины или из двух смежных вершин.
|proof=
Утверждение очевидно для деревьев с одной и двумя вершинами. Покажем, что у любого другого дерева <tex>T</tex> те же центральные вершины, что и у дерева <tex>T'</tex>, полученного из <tex>T</tex> удалением всех его висячих вершин. Расстояние от данной вершины дерева <tex>u</tex> до любой другой вершины <tex>v</tex> достигает наибольшего значения, когда <tex>v</tex> – висячая вершина. Таким образом, эксцентриситет каждой вершины дерева <tex>T'</tex> точно на единицу меньше эксцентриситета этой же вершины в дереве <tex>T</tex>, следовательно, центры этих деревьев совпадают. Продолжим процесс удаления и получим требуемое.
}}
Обоснование корректности:Будем пользоваться свойствомСобственно,что алгоритм нахождения центра описан в любом дереве >= 2 висячих вершин(степерь у них = 1)Докажем вспомогательную лемму:Искомое расстояние - есть расстояние между двумя листами. Доказательство: пусть нет, пусть искомое расстояние - есть расстояние между вершина a, b, где b - не является листом.Т.к. b не является листом, то значит её степень > 1 => из неё существует ребро в непосещенную вершину (дважды посетить вершину b мы не можем). Лемма доказанадоказательстве теоремы.
Запустив BFS от случайной * Пройдёмся по дереву [[Обход_в_глубину,_цвета_вершин|обходом в глубину]] и пометим все висячие вершинычислом <tex>0</tex>. Мы получим дерево BFS* Обрежем помеченные вершины. Теорема* Образовавшиеся листья пометим числом <tex>1</tex> и тоже обрежем. В * Будем повторять, пока на текущей глубине не окажется не более двух листьев, и при этом в дереве BFS будет тоже не существует ребер между вершинами из разных поддеревьев некоторого из общего предка.Доказательство как про дерево DFSболее двух листьев.
Мы свели задачу к нахождению вершины v, такой, что сумма глубин поддеревьев максимальнаОставшиеся листья являются центром дерева.
ДокажемДля того, что одно из искомых поддеревьев содержит самый глубокий листчтобы алгоритм работал за <tex>O(n)</tex>, нужно обрабатывать листья по одному, поддерживая в [[Очередь|очереди]] два последовательных по глубине слоя. == См. также ==Пусть нет*[[Дерево,_эквивалентные_определения|Дерево, тогда взяв расстояние от v до глубочайшего листа мы можем улучшить ответ. эквивалентные определения]]*[[Дополнительный,_самодополнительный_граф|Дополнительный, самодополнительный граф]]
Таким образом мы доказали, что нам нужно взять наиглубочайшую вершину t после первого bfs, очевидно что ей в пару надо сапоставить вершину p , что dist== Источники информации ==* [[wikipedia:Distance_(t, pgraph_theory) |Wikipedia {{- max --}} Distance (graph theory)]]* ''Ф. Очевидно, что проблема решается запуском bfs из tХарари'': Теория графов* [http://rain. ifmo.ru/cat/data/theory/graph-location/centers-2006/article.pdf ''А. Клебанов'': Центры графов(нерабочая ссылка)]
Оценка производительности[[Категория:Дискретная математика и алгоритмы]]Все операции кроме bfs - О(1)BFS работает линейное время,запускаем мы его 2 раза.Получаем O(V+E)[[Категория: Основные определения теории графов]]
1632
правки

Навигация