Изменения

Перейти к: навигация, поиск

Алгоритмы на деревьях

7351 байт добавлено, 19:11, 4 сентября 2022
м
rollbackEdits.php mass rollback
'''Диаметр дерева''' - максимальная длина кратчайшего пути между любыми двумя вершинами.Алгоритм в этой статье находил диаметр в дереве,при чём очень простым алгоритмом.__TOC__
== Диаметр дерева =={{Определение|id = tree|definition ='''Алгоритм:Диаметр дерева''' (англ. ''diameter of a tree'') — максимальная длина (в рёбрах) кратчайшего пути в дереве между любыми двумя вершинами.}} Пусть дан граф <tex>G = \langle V, E \rangle </tex>. Тогда диаметром <tex>d</tex> называется <tex>\max\limits_{u, v \in V} dist(v, u)</tex>, где <tex>dist</tex> — кратчайшее расстояние между вершинами. === Алгоритм ===* Возьмём любую вершину <tex> v \in V </tex> и найдём расстояния до всех других вершин.<tex>d[i] = dist(v, i)</tex>
d = max{* Возьмём вершину <tex> v u \in V </tex>такую,что <tex> d[u ] \geqslant d[t]</tex> для любого <tex> \subset graph, t</tex> . Снова найдём расстояние от <tex> v \ne u </tex>} distдо всех остальных вершин. Самое большое расстояние — диаметр дерева.Расстояние до остальных вершин будем искать [[Обход_в_ширину|алгоритмом <tex>BFS</tex>]]. === Реализация === <span style="color:green">//граф g представлен списком смежности</span> '''int''' diameterTree('''list<list<texint>> ''' g): v= u = w = 0 d = bfs(g, v) '''for''' i = 0, i < n, i++ '''if''' d[i] > d[u] u = i d = bfs(g, u ) '''for''' i = 0, i < n, i++ '''if''' d[i] > d[w] w = i '''return''' d[w] === Обоснование корректности ===Будем пользоваться свойством, что в любом дереве больше одного листа. Исключительный случай — дерево из одной вершины, но алгоритм сработает верно и в этом случае. {{Теорема|statement=Искомое расстояние — расстояние между двумя листами.|proof=Пусть искомое расстояние — расстояние между вершинами <tex>a, b</tex>, где <tex>b</tex> не является листом. Так как <tex>b</tex> не является листом, то её степень больше единицы, следовательно, из неё существует ребро в непосещённую вершину (дважды посетить вершину <tex>b</tex> мы не можем).}}
Возьмём вершину После запуска алгоритма получим дерево <tex> u BFS</tex> такую,что d[u] >= d[t] для любого t.Снова найдём расстояние до всех остальных вершин.Самое большое расстояние - диаметр дерева.Расстояние до остальных вершин удобно искать алгоритмом BFS.
'''Реализация{{Теорема|statement=В дереве <tex>BFS</tex> не существует ребер между вершинами из разных поддеревьев некоторого их общего предка.|proof=Предположим, существует ребро <tex>u, v</tex> между соседними поддеревьями:'''Рассмотрим первую вершину, в которую приведет наш алгоритм, пусть это вершина <tex>u</tex>, тогда в ходе рассмотрения всех смежных вершин <tex>u</tex> мы добавим в список вершину <tex>v</tex>, тем самым исключив возможность попадания их в разные поддеревья.}}
void diameter(graph g) { v = u = w = 0; bfs(v); // заполняет массив d[n] расстояниями до всех вершин. for(i = 0; i Мы свели задачу к нахождению вершины < n; i++) if (d[i] tex> d[u]) u = i; bfs(u); for(i = 0; i w< n; i++) if (d[i] /tex> d[w]) w = i; return d[w]; }, такой что сумма глубин поддеревьев максимальна.
Докажем, что одно из искомых поддеревьев содержит самый глубокий лист.
Пусть нет, тогда, взяв расстояние от <tex>w</tex> до глубочайшего листа, мы можем улучшить ответ.
Таким образом мы доказали, что нам нужно взять вершину <tex>u</tex> с наибольшей глубиной после первого <tex>BFS</tex>, очевидно, что ей в пару надо сопоставить вершину <tex>w</tex>, такую что <tex>dist(u, w)</tex> максимально. Вершину <tex>w</tex> можно найти запуском <tex>BFS</tex> из <tex>u</tex>.
=== Оценка времени работы ===
Все операции кроме <tex>BFS</tex> — <tex>O(1)</tex>.
<tex>BFS</tex> работает за линейное время, запускаем мы его два раза. Получаем <tex>O(|V| + |E|)</tex>.
== Центр дерева ===== Определения ==={{Определение|id = tree|definition ='''Эксцентриситет вершины <tex>e(v)</tex>''' (англ. ''eccentricity of a vertex'') — <tex>\max\limits_{u\in V} dist(v, u)</tex>, где <tex>V</tex> — множество вершин связного графа <tex>G</tex>.}}{{Определение|id = tree|definition ='''Радиус <tex>r(G)</tex>''' (англ. ''radius'') — наименьший из эксцентриситетов вершин графа <tex>G</tex>.}}{{Определение|id = tree|definition ='''Центральная вершина''' (англ. ''central vertex'') — вершина графа <tex>G</tex>, такая что <tex>e(v) = r(G)</tex> }}{{Определение|id = tree|definition ='''Центр графа <tex>G</tex>''' (англ. 'Обоснование корректности:'center of a graph'') — множество всех центральных вершин графа <tex>G</tex>.}}[[Файл:Центральные_вершины.png|300px|thumb|left|Примеры деревьев с одной и двумя центральными вершинами]][[Файл:Эксцентриситеты.png|400px|thumb|center|Графы, у которых показан эксцентриситет каждой вершины]]
Будем пользоваться свойством=== Алгоритм ======= Наивный алгоритм ====Найдём центр графа исходя из его определения.* Построим матрицу <tex>A_{n \times n}</tex> (<tex>n</tex> — мощность множества <tex>V</tex>), где <tex>a_{ij} = d_{ij}</tex>,что то есть матрицу кратчайших путей. Для её построения можно воспользоваться [[Алгоритм_Флойда|алгоритмом Флойда-Уоршелла]] или [[Алгоритм_Дейкстры|Дейкстры]].* Подсчитаем максимум в любом дереве каждой строчке матрицы <tex>A</tex>. Таким образом, получим массив длины <tex>n</tex>= 2 висячих .* Найдём наименьший элемент в этом массиве. Эта вершина и есть центр графа. В том случае, когда вершиннесколько, все они являются центрами. Асимптотика зависит от используемого способа подсчета кратчайших путей. При Флойде это будет <tex>O(V^3)</tex>, а при Дейкстре — максимум из асимптотики конкретной реализации Дейкстры и <tex>O(степерь у них = 1V^2)</tex>, за которую мы находим максимумы в матрице.
==== Алгоритм для дерева за O(n) ====
{{ЛеммаТеорема|statement=Искомое расстояние - есть расстояние между двумя листамиКаждое дерево имеет центр, состоящий из одной вершины или из двух смежных вершин.|proof=пусть нетУтверждение очевидно для деревьев с одной и двумя вершинами. Покажем, пусть искомое расстояние - есть расстояние между вершина aчто у любого другого дерева <tex>T</tex> те же центральные вершины, bчто и у дерева <tex>T'</tex>, где b - не является листомполученного из <tex>T</tex> удалением всех его висячих вершин.ТРасстояние от данной вершины дерева <tex>u</tex> до любой другой вершины <tex>v</tex> достигает наибольшего значения, когда <tex>v</tex> – висячая вершина.к. b не является листомТаким образом, то значит её степень эксцентриситет каждой вершины дерева <tex> 1 =T'</tex> из неё существует ребро точно на единицу меньше эксцентриситета этой же вершины в непосещенную вершину (дважды посетить вершину b мы не можем)дереве <tex>T</tex>, следовательно, центры этих деревьев совпадают. Лемма доказанаПродолжим процесс удаления и получим требуемое.
}}
Собственно, алгоритм нахождения центра описан в доказательстве теоремы.
* Пройдёмся по дереву [[Обход_в_глубину,_цвета_вершин|обходом в глубину]] и пометим все висячие вершины числом <tex>0</tex>.
* Обрежем помеченные вершины.
* Образовавшиеся листья пометим числом <tex>1</tex> и тоже обрежем.
* Будем повторять, пока на текущей глубине не окажется не более двух листьев, и при этом в дереве будет тоже не более двух листьев.
Запустив BFS от произвольной вершины. Мы получим дерево BFS. Теорема. В дереве BFS не существует ребер между вершинами из разных поддеревьев некоторого из общего предка.Доказательство как про дерево DFSОставшиеся листья являются центром дерева.
Мы свели задачу к нахождению вершины vДля того, такойчтобы алгоритм работал за <tex>O(n)</tex>, что сумма глубин поддеревьев максимальнанужно обрабатывать листья по одному, поддерживая в [[Очередь|очереди]] два последовательных по глубине слоя.
Докажем== См. также ==*[[Дерево,_эквивалентные_определения|Дерево, что одно из искомых поддеревьев содержит самый глубокий лист. эквивалентные определения]]Пусть нет*[[Дополнительный, тогда взяв расстояние от v до глубочайшего листа мы можем улучшить ответ. _самодополнительный_граф|Дополнительный, самодополнительный граф]]
Таким образом мы доказали, что нам нужно взять наиглубочайшую вершину t после первого bfs, очевидно что ей в пару надо сапоставить вершину p , что dist== Источники информации ==* [[wikipedia:Distance_(t, pgraph_theory) |Wikipedia {{---}} Distance (graph theory)]]* ''Ф. Харари'': Теория графов* [http://rain.ifmo.ru/cat/data/theory/graph- max location/centers-2006/article. Очевидно, что проблема решается запуском bfs из tpdf ''А. }Клебанов'': Центры графов(нерабочая ссылка)]
'''Оценка производительности[[Категория:'''Дискретная математика и алгоритмы]]Все операции кроме bfs - О(1)BFS работает линейное время,запускаем мы его 2 раза.Получаем O(V+E)[[Категория: Основные определения теории графов]]
1632
правки

Навигация