Алгоритм Shift-And — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Исправление ошибок с отображением \ldots, замена \cdot на \times при указании размера массива)
м (rollbackEdits.php mass rollback)
 
(не показана 1 промежуточная версия 1 участника)
(нет различий)

Текущая версия на 19:11, 4 сентября 2022

В 1990ые годы Рикардо Беза-Йетс (англ. Ricardo Baeza-Yates) и Гастон Гоннет (англ. Gaston Gonnet) изобрели простой битовый метод, эффективно решающий задачу точного поиска малых образцов (длиной в типичное английское слово). Они назвали его методом [math]Shift\texttt{-}And[/math]. Также алгоритм известен как [math]bitap[/math] алгоритм и алгоритм Беза-Йетса-Гоннета. Существует вариация данного алгоритма под названием [math]Shift\texttt{-}Or[/math], которая будет рассмотрена ниже.

Алгоритм

Пусть [math]p[/math] — шаблон длины [math]n[/math], [math]t[/math] — текст длины [math]m[/math].

Нам потребуется двоичный массив [math]M[/math] размером [math]n \times (m + 1)[/math], в котором индекс [math]i[/math] пробегает значения от [math]1[/math] до [math]n[/math], а индекс [math]j[/math] — от [math]0[/math] до [math]m[/math].

[math]M[i][j] = 1[/math], если первые [math]i[/math] символов [math]p[/math] точно совпадают с [math]i[/math] символами [math]t[/math], кончаясь на позиции [math]j[/math]; иначе [math]M[i][j] = 0[/math].

[math] M[i][j] = \left\{ \begin{array}{ll} 1, & \mbox {if p[1 $\ldots$ i] = t[j - i + 1 $\ldots$ j]} \\ 0, & \mbox {otherwise} \end{array} \right. [/math]

Например, пусть [math]t = california[/math], [math]p = for[/math]. Тогда [math]M[1][5] = M[2][6] = M[3][7] = 1[/math], остальные [math]M[i][j] = 0[/math].

Получаем, что элементы, равные [math]1[/math], в строчке [math]i[/math] показывают все места в [math]t[/math], где заканчиватся копии [math]p[1 \ldots i][/math], а столбец [math]j[/math] показывает все префиксы [math]p[/math], которые заканчиваются в позиции [math]j[/math] строки [math]t[/math].

[math]M[n][j] = 1[/math] тогда, когда вхождение [math]p[/math] заканчивается в позиции [math]j[/math] строки [math]t[/math]. То есть вычисление последней строки [math]M[/math] решает задачу точного совпадения.

Построение массива M

Создадим для каждого символа алфавита [math]x[/math] двоичный вектор [math]U[x][/math] длины [math]n[/math]. [math]U[x][/math] равно [math]1[/math] в тех позициях [math]p[/math], где стоит символ [math]x[/math]. Например, [math]p = abacdeab[/math], [math]U[a] = 10100010[/math]


Определение:
Назовём вектором [math]Bit\texttt{-}Shift(M[j])[/math] такой вектор, который получен сдвигом столбца [math]M[j][/math] вниз на одну позицию и записью [math]1[/math] в первой позиции. Старое значение в позиции [math]n[/math] теряется.


То есть [math]Bit\texttt{-}Shift(M[j])[/math] состоит из [math]1[/math], к которой приписаны первые [math]n - 1[/math] битов столбца [math]M[j][/math]. Например,

[math](0, 0, 0, 1, 0, 1, 1, 0, 1) \overset{Bit\texttt{-}Shift}{\longmapsto} (1, 0, 0, 0, 1, 0, 1, 1, 0)[/math]

Из определения, нулевой столбец [math]M[/math] состоит из нулей. Элементы любого другого столбца [math]M[j],\ j \gt 0[/math] получаются из столбца [math]M[j - 1][/math] и вектора [math]U[/math] для символа [math]t[j][/math]. А именно, вектор для столбца [math]j[/math] получается операцией побитового логического умножения [math]and[/math] вектора [math]Bit\texttt{-}Shift(M[j - 1])[/math] и вектора [math]U[t[j]][/math]. [math]M[j] = Bit\texttt{-}Shift(M[j - 1]) \ and \ U[t[j]][/math]

Псевдокод

   string shiftAndSearch(string text, string pattern):
       n = pattern.length
       m = text.length
       if n == 0
           return text
       M = array[n] of bit            // для поиска коротких слов достаточно одной переменной типа integer 
       fill(M, 0)
       U = new array [[math]|\Sigma|[/math]][n] of bit  // изначально все элементы равны [math] 0 [/math] 
       for i = 1..n                  // препроцессинг — вычисление вектора [math] U [/math] 
           U[pattern[i]][i] = 1
       for j = 1..m
           M = Bit-Shift(M) & U[text[j]]
           if M[n]
               return text[j - n + 1..j]
       return null

Корректность

Докажем, что метод [math]Shift\texttt{-}And[/math] правильно вычисляет элементы массива [math]M[/math]. Заметим, что для любого [math]i \gt 1[/math] элемент [math]M[i][j] = 1[/math] тогда и только тогда, когда [math]p[1 \ldots i - 1][/math] совпадает с [math] t[j - i + 1 \ldots j-1][/math], а символ [math]p[i][/math] совпадает с [math]t[j][/math]. Первое условие выполнено, когда элемент массива [math]M[i - 1][j - 1] = 1[/math], а второе — когда [math]i[/math]-ый бит вектора [math]U[/math] для символа [math]t[j][/math] равен [math]1[/math]. Таким образом, чтобы вычислить элемент [math] M[i][j] [/math], нужно взять результат побитовой операции [math] and [/math] элементов [math] M[i - 1][j - 1] [/math] и [math]U[t[j]][i][/math]. Это эквивалентно применению побитовой операции [math] and [/math] к вектору [math] U[t[j]] [/math] и сдвинутому на [math] 1 [/math] столбцу под номером [math] j - 1 [/math] массива [math] M [/math]. Для [math] i = 1 [/math] нам достаточно проверить, что [math]U[t[j]][1] = 1 [/math], поэтому мы и записываем в [math] M[1][j] [/math] единицу, что и делает операция [math] Bit\texttt{-}Shift [/math]. Получаем, что наш алгоритм корректно вычисляет все значения массива [math] M [/math].

Эффективность

Сложность алгоритма составляет [math]O(n \cdot m)[/math], на препроцессинг — построение массива [math]U[/math] — требуется [math]O(|\Sigma| \cdot n)[/math] операций и памяти. Если же [math]n[/math] не превышает длину машинного слова, то сложность получается [math]O(m)[/math] и [math]O(n + |\Sigma|)[/math] соответсвенно.

Алгоритм Shift-Or

Аналогичен алгоритму [math]Shift\texttt{-}And[/math], но вместо массива [math]M[/math] используется массив [math]R[/math], определяемый следующим образом:

[math] R[i][j] = \left\{ \begin{array}{ll} 0, & \mbox {if p[1 $\ldots$ i] = t[j - i + 1 $\ldots$ j]} \\ 1, & \mbox {otherwise} \end{array} \right. [/math]

Следующий столбец [math]R[j][/math] получается операцией побитового логического сложения [math]or[/math] вектора [math]Bit\texttt{-}Shift'(R[j - 1])[/math] и вектора [math]W[t[j]][/math]. Здесь [math]W[t[j]] = not \ U[t[j]][/math], а [math]Bit\texttt{-}Shift'(R[j - 1])[/math] — сдвиг вектора [math]R[j - 1][/math] на одну позицию вниз с записью [math]0[/math] в первой позиции.

[math]R[j] = Bit\texttt{-}Shift'(R[j - 1]) \ or \ W[t[j]][/math]

Очевидно, что алгоритм [math]Shift\texttt{-}Or[/math] корректен, так как данная формула получается применением логического отрицания к аналогичной формуле для алгоритма [math]Shift\texttt{-}And[/math], корректность которого была доказана выше.

См. также

Источники информации