Распределённый алгоритм для WCP — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показано 6 промежуточных версий 4 участников)
Строка 2: Строка 2:
 
'''Распределенный алгоритм для WCP''' – алгоритм для поиска наименьшего (проще говоря, самого левого) [[Срез, согласованный срез|согласованного среза]] в котором выполняется [[Слабый конъюнктивный предикат (WCP)|слабый конъюнктивный предикат]].
 
'''Распределенный алгоритм для WCP''' – алгоритм для поиска наименьшего (проще говоря, самого левого) [[Срез, согласованный срез|согласованного среза]] в котором выполняется [[Слабый конъюнктивный предикат (WCP)|слабый конъюнктивный предикат]].
  
В распределенном алгоритме используются [[Векторные часы|векторные часы]].
+
В распределенном алгоритме используются [[Векторные часы|векторные часы]], как и в [[Централизованный алгоритм для WCP|централизованном]] (они вообще похожи, рекомендуется сначала понять централизованный).
  
В дополнение к каждому из $N$ процессов заведем еще $N$ монитор-процессов, где каждый процесс связан со своим монитор-процессом. Монитор-процессы отправляют друг другу так называемый ''токен'' (его описание ниже) и получают вектор часов от соответствующих процессов.
+
В дополнение к каждому из $N$ процессов заведем еще $N$ координаторов (вместо одного на всех), где каждый процесс связан со своим координатором.
 +
Каждый процесс отправляет сообщения либо другим процессам, либо своему координатору (каждый раз, когда выполняется локальный предикат и увеличились векторные часы).
 +
Каждый координатор отправляет сообщения только другим координаторам.
  
Токен состоит из двух векторов. Первый назовем $G$. $G[i] = k$ означает, что состояние номер $k$ $i$-го процесса входит в срез-кандидат. Важно, что этот срез может не быть согласованным, но все состояния в нем удовлетворяют локальным предикатам. $G$ инициализируется нулями.
+
В каждый момент времени ровно у одного координатора есть ''токен''.
 +
Токен у координатора $i$ означает, что в централизованном алгоритме процесс $i$ был бы красным и мы бы ждали от него сообщений, чтобы обновить срез.
 +
Когда процесс становится зелёным, токен передаётся координатору другого красного процесса.
 +
Итого мы распределяем очереди для процессов (сообщения от процесса хранятся только на координаторе): всё ещё требуется $O(N^2m)$ времени и памяти в сумме, но каждый процесс выполняет $O(Nm)$ работы ($N$ — количество процессов, $m$ — количество сообщений от одного процесса).
  
Второй вектор назовем $color$, где $color[i]$ обозначает цвет состояния среза-кандидата для $i$-го процесса. Цвет состояния может быть красным или зеленым. Если $color[i]$ равен красному, то состояние $(i, G [i])$ и все его предшествующие состояния уже красные и никогда не смогут удовлетворить $WCP$. Если $color[i]$ зеленый, то нет такого состояния в $G$, что $(i, G[i])$ предшествует ему. $color$ инициализируется красными.
+
Формально токен состоит из двух векторов. Первый содержит срез-кандидат, назовем $G$. $G[i] = k$ означает, что состояние номер $k$ $i$-го процесса входит в срез-кандидат. Важно, что этот срез может не быть согласованным, но все состояния в нем удовлетворяют локальным предикатам. $G$ инициализируется нулями.
 +
 
 +
Второй вектор назовем $color$, где $color[i]$ обозначает цвет состояния среза-кандидата для $i$-го процесса. Цвет состояния может быть красным или зеленым. Если $color[i]$ равен красному, то состояние $(i, G [i])$ и все его предшествующие состояния уже красные и никогда не смогут удовлетворить $WCP$ из согласованного среза. Если $color[i]$ зеленый, то нет такого состояния в $G$, что $(i, G[i])$ предшествует ему. $color$ инициализируется красными.
  
 
Работа $i$-го монитор-процесса описана следующим псевдокодом. Гарантируется: когда переменная $detect = true$, мы получим искомый срез.
 
Работа $i$-го монитор-процесса описана следующим псевдокодом. Гарантируется: когда переменная $detect = true$, мы получим искомый срез.
 +
 
=== Псевдокод ===
 
=== Псевдокод ===
 
+
 
 
+
   '''var''' candidate: array[1..n] of integer initially 0;<font color="green"> // vector clock from the candidate state</font>
   '''var'''
 
    <font color="green"> // vector clock from the candidate state</font>
 
    candidate: array[1..n] of integer initially 0;
 
 
   Upon receiving the token (G, color)
 
   Upon receiving the token (G, color)
 
   '''while''' (color[i] = red) '''do'''
 
   '''while''' (color[i] = red) '''do'''

Текущая версия на 19:11, 4 сентября 2022

Распределенный алгоритм для WCP – алгоритм для поиска наименьшего (проще говоря, самого левого) согласованного среза в котором выполняется слабый конъюнктивный предикат.

В распределенном алгоритме используются векторные часы, как и в централизованном (они вообще похожи, рекомендуется сначала понять централизованный).

В дополнение к каждому из $N$ процессов заведем еще $N$ координаторов (вместо одного на всех), где каждый процесс связан со своим координатором. Каждый процесс отправляет сообщения либо другим процессам, либо своему координатору (каждый раз, когда выполняется локальный предикат и увеличились векторные часы). Каждый координатор отправляет сообщения только другим координаторам.

В каждый момент времени ровно у одного координатора есть токен. Токен у координатора $i$ означает, что в централизованном алгоритме процесс $i$ был бы красным и мы бы ждали от него сообщений, чтобы обновить срез. Когда процесс становится зелёным, токен передаётся координатору другого красного процесса. Итого мы распределяем очереди для процессов (сообщения от процесса хранятся только на координаторе): всё ещё требуется $O(N^2m)$ времени и памяти в сумме, но каждый процесс выполняет $O(Nm)$ работы ($N$ — количество процессов, $m$ — количество сообщений от одного процесса).

Формально токен состоит из двух векторов. Первый содержит срез-кандидат, назовем $G$. $G[i] = k$ означает, что состояние номер $k$ $i$-го процесса входит в срез-кандидат. Важно, что этот срез может не быть согласованным, но все состояния в нем удовлетворяют локальным предикатам. $G$ инициализируется нулями.

Второй вектор назовем $color$, где $color[i]$ обозначает цвет состояния среза-кандидата для $i$-го процесса. Цвет состояния может быть красным или зеленым. Если $color[i]$ равен красному, то состояние $(i, G [i])$ и все его предшествующие состояния уже красные и никогда не смогут удовлетворить $WCP$ из согласованного среза. Если $color[i]$ зеленый, то нет такого состояния в $G$, что $(i, G[i])$ предшествует ему. $color$ инициализируется красными.

Работа $i$-го монитор-процесса описана следующим псевдокодом. Гарантируется: когда переменная $detect = true$, мы получим искомый срез.

Псевдокод

 var candidate: array[1..n] of integer initially 0; // vector clock from the candidate state
 Upon receiving the token (G, color)
 while (color[i] = red) do
   receive candidate from application process P
     if (candidate[i] > G [i]) then
       G [i] := candidate[i];
       color[i] := green;
 for j := 1 to n, (j != i) do
   if (candidate[j] >= G [j]) then
     G [j] := candidate[j];
     color[j]:= red;
 if ([math]\exists j[/math]: color[j] = red) then send token to [math]M_j[/math] ;
 else detect := true;