Интеграл с переменным верхним пределом — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Формула Ньютона-Лейбница: уточнение, к чему применяется формула Лагранжа)
м (rollbackEdits.php mass rollback)
 
(не показана 1 промежуточная версия 1 участника)
(нет различий)

Текущая версия на 19:12, 4 сентября 2022

Эта статья находится в разработке!

Утверждение

Утверждение:
Пусть [math]f \in \mathcal{R}(a, b)[/math] и [math]m \leq f(x) \leq M[/math]. Тогда [math]m \leq \frac1{b - a} \int\limits_a^b f \leq M[/math]
[math]\triangleright[/math]

По условию [math]m \leq f \leq M[/math]. Проинтегрируем каждую часть:

[math]\int\limits_a^b m \leq \int\limits_a^b f \leq \int\limits_a^b M[/math].

Посчитаем значения крайних интегралов и поделим всё на [math]b - a[/math].

[math]m \leq \frac1{b - a}\int\limits_a^b f \leq M[/math].
[math]\triangleleft[/math]

Следствие

Утверждение:
Пусть [math]f[/math] — непрерывна на [math][a; b][/math]. Тогда [math]\exists c \in [a; b]: f(c) = \frac1{b - a}\int\limits_a^b f[/math]
[math]\triangleright[/math]

Определим [math]m = \min\limits_{[a; b]} f(x)[/math], [math]M = \max\limits_{[a; b]} f(x)[/math].

Тогда [math][m; M][/math] — множество значений функции.

По предыдущему утверждению, [math]\frac1{b - a} \int\limits_a^b f\in [m; M][/math] и в силу непрерывности [math]f[/math] по теореме Коши подходящее [math]c[/math] найдётся.
[math]\triangleleft[/math]


Определение:
Объектом исследования этого параграфа является [math]F(x) = \int\limits_a^x f(t) dt[/math], [math]f \in \mathcal{R}(a, b)[/math], [math]x \in [a, b][/math]. Такая функция называется интегралом с переменным верхним пределом.


Свойства

№1

Утверждение:
[math]F[/math] — непрерывна на [math][a; b][/math].
[math]\triangleright[/math]

Так как [math] f [/math] ограничена (в силу этого утверждения), то [math]\exists M: \ |f| \leq M[/math].

Тогда [math]|F(x + \Delta x) - F(x)| = \left|\int\limits_x^{x + \Delta x}f\right| \leqslant M \Delta x \Rightarrow F[/math] — непрерывна.
[math]\triangleleft[/math]

Теорема Барроу

Теорема (Барроу):
Пусть [math]f \in \mathcal{R}(a, b)[/math] и непрерывна в [math]x_0 \in (a; b)[/math]. Тогда [math]F[/math] дифференцируема в этой точке и её производная равна [math]F'(x_0) = f(x_0)[/math].
Доказательство:
[math]\triangleright[/math]

Приращение [math]F(x_0 + \Delta x) - F(x_0) = \int\limits_{x_0}^{x_0 + \Delta x} f(x)dx[/math]

[math]\forall \varepsilon \gt 0 \ \exists \delta \gt 0[/math] при [math]|x - x_0| \lt \delta [/math] в силу непрерывности в точке [math]x_0[/math] выполняется [math]f(x_0) - \varepsilon \lt f(x) \lt f(x_0) + \varepsilon[/math]

Рассмотрим [math] |\Delta x| \lt \delta [/math]. По первому утверждению получаем [math]\forall |\Delta x| \lt \delta, \Delta x \gt 0: \quad f(x_0) - \varepsilon \leqslant \frac1{\Delta x} \int\limits_{x_0}^{x_0 + \Delta x} f \leqslant f(x_0) + \varepsilon [/math]

Устремляя [math]\varepsilon \to 0[/math], получаем [math]\frac{\Delta F(x_0, \Delta x)}{\Delta x} \to f(x_0)[/math]
[math]\triangleleft[/math]

Важное следствие

Утверждение:
Пусть [math]f[/math] — непрерывна на [math][a; b][/math]. Тогда на этом отрезке у неё существует неопределённый интеграл.
[math]\triangleright[/math]

[math]F(x) = \int\limits_a^x f \Rightarrow F'(x) = f(x)[/math]

В силу непрерывности функции на отрезке и теоремы Барроу [math]F'(x) =f(x)[/math] — одна из первообразных.

Значит, неопределённый интеграл существует.
[math]\triangleleft[/math]

Формула Ньютона-Лейбница

Теорема (формула Ньютона-Лейбница):
Пусть [math]F[/math] дифференцируема на [math][a; b][/math], её производная [math]f[/math] интегрируема на этом же отрезке. Тогда [math]F(b) - F(a) = \int\limits_a^b f(x) dx[/math]
Доказательство:
[math]\triangleright[/math]

Так как [math]f[/math] — интегрируема, то [math]\forall \tau \ \int\limits_a^b f [/math] равен пределу интегральных сумм при любой системе промежуточных точек для [math]\tau[/math].

Поэтому, если [math]\tau[/math] — разбиение [math][a; b][/math], то

[math]F(b) - F(a) = \sum\limits_{k = 0}^{n - 1} F(x_{k + 1}) - F(x_k)[/math]. Так как [math]F[/math] дифференцируема, то, применив для каждого промежутка из разбиения формулу Лагранжа, получим:

[math]F(x_{k + 1}) - F(x_k) = F'(\bar x_k) \Delta x_k = f(\bar x_k) \Delta x[/math]

[math]F(b) - F(a) = \sum\limits_{k = 0}^{n - 1} f(\bar x_k) \Delta x_k = \sigma (f, \tau)[/math]

[math]\operatorname{rang} \tau \to 0[/math], следовательно, правая часть стремится к интегралу, левая — постоянна. Значит, в пределе, получаем нужную формулу.
[math]\triangleleft[/math]

Следствие

Объединяя эту теорему со следствием к теореме Барроу получаем следующий факт:

Утверждение:
Пусть [math]f[/math] — непрерывна на [math][a; b][/math], [math]F[/math] — одна из первообразных. Тогда [math]\int\limits_a^b f(x) dx = F(b) - F(a)[/math]

Формулы

Вычисление определенного интеграла по частям

[math]\int\limits_a^b u(x) d v(x) = uv|_a^b - \int\limits_a^b v(x) d u(x)[/math]

Вычисление определенного интеграла сложной функции

Утверждение:
Пусть

[math]y = f(x), \ x \in (a; b) \quad x = \varphi(t), \ t\in[\alpha; \beta][/math]

[math]\varphi(t) \in [a; b][/math], [math]b = \varphi(t_2)[/math], [math]a = \varphi(t_1)[/math]

Тогда [math]\quad \exists \varphi'(t) \Rightarrow \int\limits_a^b f(x) d x = \int\limits_{t_1}^{t_2} f(\varphi(t)) \varphi'(t) d t[/math]
[math]\triangleright[/math]

Монотонность [math]\varphi[/math] не требуется. Это связано с тем, что мы вычисляем определённый интеграл, то есть число.

Как правило, в этих формулах считается, что все функции непрерывны.

[math]f[/math] — непрерывна на [math][a,b][/math]. Значит, [math]\exists F: \ F' = f[/math]

По формуле Ньютона-Лейбница, [math]\int\limits_a^b f = F(b) - F(a)[/math].

[math]G(t) = F(\varphi(t))[/math]

[math]G'(t) = F'(x) \varphi'(t) = f(\varphi(t)) \varphi'(t)[/math]

[math]\int\limits_{t_1}^{t_2} f(\varphi(t)) \varphi'(t) dt = G(t_2) - G(t_1) = F(\varphi(t_2)) - F(\varphi(t_1)) = F(b) - F(a)[/math]

У интересующих интегралов правые части совпали, значит, интегралы равны.
[math]\triangleleft[/math]