Интеграл с переменным верхним пределом — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показано 17 промежуточных версий 5 участников)
Строка 1: Строка 1:
 
{{В разработке}}
 
{{В разработке}}
 
 
[[Категория:Математический анализ 1 курс]]
 
[[Категория:Математический анализ 1 курс]]
  
= ПРОЧИТАТЬ И ДОРАБОТАТЬ =
+
== Утверждение ==
 
 
 
{{Утверждение
 
{{Утверждение
 
|statement=
 
|statement=
Строка 18: Строка 16:
 
}}
 
}}
  
 +
=== Следствие ===
  
 
{{Утверждение
 
{{Утверждение
Строка 27: Строка 26:
 
Тогда <tex>[m; M]</tex> {{---}} множество значений функции.
 
Тогда <tex>[m; M]</tex> {{---}} множество значений функции.
  
По предыдущему утверждению, <tex>\frac1{b - a} \int\limits_a^b \in [m; M]</tex> и в силу непрерывности <tex>f</tex> по теореме Коши подходящее <tex>c</tex> найдётся.
+
По предыдущему утверждению, <tex>\frac1{b - a} \int\limits_a^b f\in [m; M]</tex> и в силу непрерывности <tex>f</tex> по теореме Коши подходящее <tex>c</tex> найдётся.
 
}}
 
}}
  
Строка 38: Строка 37:
 
== Свойства ==
 
== Свойства ==
  
=== Свойство 1 ===
+
=== №1 ===
 
{{Утверждение
 
{{Утверждение
 
|statement=
 
|statement=
 
<tex>F</tex> {{---}} непрерывна на <tex>[a; b]</tex>.
 
<tex>F</tex> {{---}} непрерывна на <tex>[a; b]</tex>.
|proof
+
|proof=
<tex>f</tex> {{---}} ограничена, значит, <tex>\exists M: \ |f| \leq M</tex>.
+
Так как <tex> f </tex> ограничена (в силу [[Определение интеграла Римана, простейшие свойства#utv1 |этого утверждения]]), то  <tex>\exists M: \ |f| \leq M</tex>.
  
<tex>|F(x + \Delta x) - F(x)| = </tex> <tex>\left|\int\limits_x^{x + \Delta x}f\right| = </tex> <tex>M |\Delta x| \Rightarrow</tex> <tex>F</tex> {{---}} непрерывна.
+
Тогда <tex>|F(x + \Delta x) - F(x)| = \left|\int\limits_x^{x + \Delta x}f\right| \leqslant M \Delta x \Rightarrow F</tex> {{---}} непрерывна.
 
}}
 
}}
  
Строка 52: Строка 51:
 
|author=Барроу
 
|author=Барроу
 
|statement=
 
|statement=
Пусть <tex>F \in \mathcal{R}(a, b)</tex> и непрерывна в <tex>x_0 \in (a; b)</tex>
+
Пусть <tex>f \in \mathcal{R}(a, b)</tex> и непрерывна в <tex>x_0 \in (a; b)</tex>.
  
Тогда <tex>F</tex> дифференцируема в этой точке и её производная равна <tex>f(x_0)</tex>.
+
Тогда <tex>F</tex> дифференцируема в этой точке и её производная равна <tex>F'(x_0) = f(x_0)</tex>.
 
|proof=
 
|proof=
<tex>F(x_0 + \Delta x) - F(x_0) = \int\limits_{x_0}^{x_0 + \Delta x} f</tex>
+
Приращение <tex>F(x_0 + \Delta x) - F(x_0) = \int\limits_{x_0}^{x_0 + \Delta x} f(x)dx</tex>
  
<tex>\forall \varepsilon > 0 \ \exists \delta > 0</tex> (в силу непрерывости в <tex>x_0</tex>)
+
<tex>\forall \varepsilon > 0 \ \exists \delta > 0</tex> при <tex>|x - x_0| < \delta </tex> в силу непрерывности в точке <tex>x_0</tex> выполняется <tex>f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon</tex>
<tex>: |x - x_0| < \delta \Rightarrow f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon</tex>
 
  
По первому утверждению получаем:
+
Рассмотрим <tex> |\Delta x| < \delta </tex>. По первому утверждению получаем  
<tex>\Delta x > 0: \quad f(x_0) - \varepsilon \leq \frac1{\Delta x} \int\limits_{x_0}^{x_0 + \Delta x} f \leq f(x_0) + \varepsilon</tex>
+
<tex>\forall |\Delta x| < \delta, \Delta x > 0: \quad
 +
f(x_0) - \varepsilon \leqslant \frac1{\Delta x} \int\limits_{x_0}^{x_0 + \Delta x} f
 +
\leqslant
 +
f(x_0) + \varepsilon </tex>
  
Так как <tex>\varepsilon \to 0</tex>, <tex>\frac{\Delta F(x_0, \Delta x)}{\Delta x} \to f(x_0)</tex>
+
Устремляя <tex>\varepsilon \to 0</tex>, получаем <tex>\frac{\Delta F(x_0, \Delta x)}{\Delta x} \to f(x_0)</tex>
 
}}
 
}}
  
==== Следствие ====
+
==== Важное следствие ====
  
 
{{Утверждение
 
{{Утверждение
 +
|id = barrou_sl
 
|statement=
 
|statement=
 
Пусть <tex>f</tex> {{---}} непрерывна на <tex>[a; b]</tex>. Тогда на этом отрезке у неё существует неопределённый интеграл.
 
Пусть <tex>f</tex> {{---}} непрерывна на <tex>[a; b]</tex>. Тогда на этом отрезке у неё существует неопределённый интеграл.
Строка 88: Строка 90:
 
<tex>F(b) - F(a) = \int\limits_a^b f(x) dx</tex>
 
<tex>F(b) - F(a) = \int\limits_a^b f(x) dx</tex>
 
|proof=
 
|proof=
Так как <tex>f</tex> {{---}} интегрируема, то <tex>\forall \tau \ \int\limits_a^b f = </tex> (пределу интегральных сумм)
+
Так как <tex>f</tex> {{---}} интегрируема, то <tex>\forall \tau \ \int\limits_a^b f </tex> равен пределу интегральных сумм при любой системе промежуточных точек для <tex>\tau</tex>.
  
 
Поэтому, если <tex>\tau</tex> {{---}} разбиение <tex>[a; b]</tex>, то  
 
Поэтому, если <tex>\tau</tex> {{---}} разбиение <tex>[a; b]</tex>, то  
  
<tex>F(b) - F(a) = \sum\limits_{k = 0}^{n - 1} F(x_{k + 1}) - F(x_k)</tex>. Так как <tex>F</tex> дифференцируема, то в каждой скобке применим формулу Лагранжа:
+
<tex>F(b) - F(a) = \sum\limits_{k = 0}^{n - 1} F(x_{k + 1}) - F(x_k)</tex>. Так как <tex>F</tex> дифференцируема, то, применив для каждого промежутка из разбиения формулу Лагранжа, получим:
  
 
<tex>F(x_{k + 1}) - F(x_k) = F'(\bar x_k) \Delta x_k = f(\bar x_k) \Delta x</tex>
 
<tex>F(x_{k + 1}) - F(x_k) = F'(\bar x_k) \Delta x_k = f(\bar x_k) \Delta x</tex>
Строка 98: Строка 100:
 
<tex>F(b) - F(a) = \sum\limits_{k = 0}^{n - 1} f(\bar x_k) \Delta x_k = \sigma (f, \tau)</tex>
 
<tex>F(b) - F(a) = \sum\limits_{k = 0}^{n - 1} f(\bar x_k) \Delta x_k = \sigma (f, \tau)</tex>
  
<tex>\operatorname{rang} \tau \to 0</tex>, правая часть стремится к интегралу, левая {{---}} постоянна. Значит, в пределе, получаем нужную формулу.
+
<tex>\operatorname{rang} \tau \to 0</tex>, следовательно, правая часть стремится к интегралу, левая {{---}} постоянна. Значит, в пределе, получаем нужную формулу.
 
}}
 
}}
  
 
=== Следствие ===
 
=== Следствие ===
 +
Объединяя эту теорему со [[#barrou_sl|следствием]] к теореме Барроу получаем следующий факт:
 
{{Утверждение
 
{{Утверждение
 
|statement=
 
|statement=
 
Пусть <tex>f</tex> {{---}} непрерывна на <tex>[a; b]</tex>, <tex>F</tex> {{---}} одна из первообразных.
 
Пусть <tex>f</tex> {{---}} непрерывна на <tex>[a; b]</tex>, <tex>F</tex> {{---}} одна из первообразных.
 
Тогда <tex>\int\limits_a^b f(x) dx = F(b) - F(a)</tex>
 
Тогда <tex>\int\limits_a^b f(x) dx = F(b) - F(a)</tex>
|proof=
+
}}
Применяя формулу Ньютона-Лейбница:
+
 
1. Интегрируя по частям определённого интеграла({{TODO|t=кто вообще додумался такое сказать? я не знаю, что должно тут быть...}})
+
== Формулы ==
 +
=== Вычисление определенного интеграла по частям ===
 +
 
 +
<tex>\int\limits_a^b u(x) d v(x) = uv|_a^b - \int\limits_a^b v(x) d u(x)</tex>
  
<tex>\int\limits_a^b u(x)d x v(x) = uv|_a^b - \int\limits_a^b v(x d d(x))</tex>
+
=== Вычисление определенного интеграла сложной функции ===
  
2. <tex>y = f(x), \ x \in (a; b) \quad x = \phi(t), \ t\in[\alpha; \beta]</tex>
+
{{Утверждение
 +
|id = formula2
 +
|statement=
 +
Пусть
  
<tex>\phi(t) \in [a; b]</tex>, <tex>b = \phi(t_1)</tex>, <tex>a = \phi(t_2)</tex> ({{TODO|t=тут проверить и исправить}})
+
<tex>y = f(x), \ x \in (a; b) \quad x = \varphi(t), \ t\in[\alpha; \beta]</tex>
  
Существует интеграл <tex>\phi(t) = \int\limits_{t_1}^{t_2} f(\phi(t)) \phi'(t) d t</tex>
+
<tex>\varphi(t) \in [a; b]</tex>, <tex>b = \varphi(t_2)</tex>, <tex>a = \varphi(t_1)</tex>
  
Монотонность <tex>\phi</tex> не требуется. Это связано с тем, что мы вычисляем определённый интеграл(число).
+
Тогда <tex>\quad \exists \varphi'(t) \Rightarrow \int\limits_a^b f(x) d x = \int\limits_{t_1}^{t_2} f(\varphi(t)) \varphi'(t) d t</tex>
 +
|proof =
 +
Монотонность <tex>\varphi</tex> не требуется. Это связано с тем, что мы вычисляем определённый интеграл, то есть число.
 +
<!--
 +
({{TODO|t=что за бреееед????}})  
 +
Все нормально
 +
-->
  
Пусть выполняются все условия для этой формулы.({{TODO|t=что за бреееед????}}) Как правило, в этих формулах считается, что все функции непрерывны.
+
Как правило, в этих формулах считается, что все функции непрерывны.
  
<tex>f</tex> {{---}} непрерывна. Значит, <tex>\exists F: \ F' = f</tex>
+
<tex>f</tex> {{---}} непрерывна на <tex>[a,b]</tex>. Значит, <tex>\exists F: \ F' = f</tex>
  
 
По формуле Ньютона-Лейбница, <tex>\int\limits_a^b f = F(b) - F(a)</tex>.
 
По формуле Ньютона-Лейбница, <tex>\int\limits_a^b f = F(b) - F(a)</tex>.
  
<tex>G(t) = F(\phi(t))</tex>
+
<tex>G(t) = F(\varphi(t))</tex>
  
<tex>G'(t) = F'(x) \phi'(t) = f(\phi(t)) \phi'(t)</tex>
+
<tex>G'(t) = F'(x) \varphi'(t) = f(\varphi(t)) \varphi'(t)</tex>
  
<tex>\int\limits_{t_1}^{t_2} f(\phi(t)) \phi'(t) dt = </tex> <tex>G(t_2) - G(t_1) =</tex> <tex>F(\phi(t_2)) - F(\phi(t_1)) = </tex> <tex>F(b) - F(a)</tex>
+
<tex>\int\limits_{t_1}^{t_2} f(\varphi(t)) \varphi'(t) dt =  
 +
G(t_2) - G(t_1) =
 +
F(\varphi(t_2)) - F(\varphi(t_1)) =
 +
F(b) - F(a)</tex>
  
 
У интересующих интегралов правые части совпали, значит, интегралы равны.
 
У интересующих интегралов правые части совпали, значит, интегралы равны.
 
}}
 
}}

Текущая версия на 19:12, 4 сентября 2022

Эта статья находится в разработке!

Утверждение

Утверждение:
Пусть [math]f \in \mathcal{R}(a, b)[/math] и [math]m \leq f(x) \leq M[/math]. Тогда [math]m \leq \frac1{b - a} \int\limits_a^b f \leq M[/math]
[math]\triangleright[/math]

По условию [math]m \leq f \leq M[/math]. Проинтегрируем каждую часть:

[math]\int\limits_a^b m \leq \int\limits_a^b f \leq \int\limits_a^b M[/math].

Посчитаем значения крайних интегралов и поделим всё на [math]b - a[/math].

[math]m \leq \frac1{b - a}\int\limits_a^b f \leq M[/math].
[math]\triangleleft[/math]

Следствие

Утверждение:
Пусть [math]f[/math] — непрерывна на [math][a; b][/math]. Тогда [math]\exists c \in [a; b]: f(c) = \frac1{b - a}\int\limits_a^b f[/math]
[math]\triangleright[/math]

Определим [math]m = \min\limits_{[a; b]} f(x)[/math], [math]M = \max\limits_{[a; b]} f(x)[/math].

Тогда [math][m; M][/math] — множество значений функции.

По предыдущему утверждению, [math]\frac1{b - a} \int\limits_a^b f\in [m; M][/math] и в силу непрерывности [math]f[/math] по теореме Коши подходящее [math]c[/math] найдётся.
[math]\triangleleft[/math]


Определение:
Объектом исследования этого параграфа является [math]F(x) = \int\limits_a^x f(t) dt[/math], [math]f \in \mathcal{R}(a, b)[/math], [math]x \in [a, b][/math]. Такая функция называется интегралом с переменным верхним пределом.


Свойства

№1

Утверждение:
[math]F[/math] — непрерывна на [math][a; b][/math].
[math]\triangleright[/math]

Так как [math] f [/math] ограничена (в силу этого утверждения), то [math]\exists M: \ |f| \leq M[/math].

Тогда [math]|F(x + \Delta x) - F(x)| = \left|\int\limits_x^{x + \Delta x}f\right| \leqslant M \Delta x \Rightarrow F[/math] — непрерывна.
[math]\triangleleft[/math]

Теорема Барроу

Теорема (Барроу):
Пусть [math]f \in \mathcal{R}(a, b)[/math] и непрерывна в [math]x_0 \in (a; b)[/math]. Тогда [math]F[/math] дифференцируема в этой точке и её производная равна [math]F'(x_0) = f(x_0)[/math].
Доказательство:
[math]\triangleright[/math]

Приращение [math]F(x_0 + \Delta x) - F(x_0) = \int\limits_{x_0}^{x_0 + \Delta x} f(x)dx[/math]

[math]\forall \varepsilon \gt 0 \ \exists \delta \gt 0[/math] при [math]|x - x_0| \lt \delta [/math] в силу непрерывности в точке [math]x_0[/math] выполняется [math]f(x_0) - \varepsilon \lt f(x) \lt f(x_0) + \varepsilon[/math]

Рассмотрим [math] |\Delta x| \lt \delta [/math]. По первому утверждению получаем [math]\forall |\Delta x| \lt \delta, \Delta x \gt 0: \quad f(x_0) - \varepsilon \leqslant \frac1{\Delta x} \int\limits_{x_0}^{x_0 + \Delta x} f \leqslant f(x_0) + \varepsilon [/math]

Устремляя [math]\varepsilon \to 0[/math], получаем [math]\frac{\Delta F(x_0, \Delta x)}{\Delta x} \to f(x_0)[/math]
[math]\triangleleft[/math]

Важное следствие

Утверждение:
Пусть [math]f[/math] — непрерывна на [math][a; b][/math]. Тогда на этом отрезке у неё существует неопределённый интеграл.
[math]\triangleright[/math]

[math]F(x) = \int\limits_a^x f \Rightarrow F'(x) = f(x)[/math]

В силу непрерывности функции на отрезке и теоремы Барроу [math]F'(x) =f(x)[/math] — одна из первообразных.

Значит, неопределённый интеграл существует.
[math]\triangleleft[/math]

Формула Ньютона-Лейбница

Теорема (формула Ньютона-Лейбница):
Пусть [math]F[/math] дифференцируема на [math][a; b][/math], её производная [math]f[/math] интегрируема на этом же отрезке. Тогда [math]F(b) - F(a) = \int\limits_a^b f(x) dx[/math]
Доказательство:
[math]\triangleright[/math]

Так как [math]f[/math] — интегрируема, то [math]\forall \tau \ \int\limits_a^b f [/math] равен пределу интегральных сумм при любой системе промежуточных точек для [math]\tau[/math].

Поэтому, если [math]\tau[/math] — разбиение [math][a; b][/math], то

[math]F(b) - F(a) = \sum\limits_{k = 0}^{n - 1} F(x_{k + 1}) - F(x_k)[/math]. Так как [math]F[/math] дифференцируема, то, применив для каждого промежутка из разбиения формулу Лагранжа, получим:

[math]F(x_{k + 1}) - F(x_k) = F'(\bar x_k) \Delta x_k = f(\bar x_k) \Delta x[/math]

[math]F(b) - F(a) = \sum\limits_{k = 0}^{n - 1} f(\bar x_k) \Delta x_k = \sigma (f, \tau)[/math]

[math]\operatorname{rang} \tau \to 0[/math], следовательно, правая часть стремится к интегралу, левая — постоянна. Значит, в пределе, получаем нужную формулу.
[math]\triangleleft[/math]

Следствие

Объединяя эту теорему со следствием к теореме Барроу получаем следующий факт:

Утверждение:
Пусть [math]f[/math] — непрерывна на [math][a; b][/math], [math]F[/math] — одна из первообразных. Тогда [math]\int\limits_a^b f(x) dx = F(b) - F(a)[/math]

Формулы

Вычисление определенного интеграла по частям

[math]\int\limits_a^b u(x) d v(x) = uv|_a^b - \int\limits_a^b v(x) d u(x)[/math]

Вычисление определенного интеграла сложной функции

Утверждение:
Пусть

[math]y = f(x), \ x \in (a; b) \quad x = \varphi(t), \ t\in[\alpha; \beta][/math]

[math]\varphi(t) \in [a; b][/math], [math]b = \varphi(t_2)[/math], [math]a = \varphi(t_1)[/math]

Тогда [math]\quad \exists \varphi'(t) \Rightarrow \int\limits_a^b f(x) d x = \int\limits_{t_1}^{t_2} f(\varphi(t)) \varphi'(t) d t[/math]
[math]\triangleright[/math]

Монотонность [math]\varphi[/math] не требуется. Это связано с тем, что мы вычисляем определённый интеграл, то есть число.

Как правило, в этих формулах считается, что все функции непрерывны.

[math]f[/math] — непрерывна на [math][a,b][/math]. Значит, [math]\exists F: \ F' = f[/math]

По формуле Ньютона-Лейбница, [math]\int\limits_a^b f = F(b) - F(a)[/math].

[math]G(t) = F(\varphi(t))[/math]

[math]G'(t) = F'(x) \varphi'(t) = f(\varphi(t)) \varphi'(t)[/math]

[math]\int\limits_{t_1}^{t_2} f(\varphi(t)) \varphi'(t) dt = G(t_2) - G(t_1) = F(\varphi(t_2)) - F(\varphi(t_1)) = F(b) - F(a)[/math]

У интересующих интегралов правые части совпали, значит, интегралы равны.
[math]\triangleleft[/math]