|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| [[Марковская цепь#Поглощающая цепь| Поглощающее состояние]] — состояние с вероятностью перехода в самого себя <tex>p_{ii}=1</tex>. | | [[Марковская цепь#Поглощающая цепь| Поглощающее состояние]] — состояние с вероятностью перехода в самого себя <tex>p_{ii}=1</tex>. |
| | | |
Текущая версия на 19:12, 4 сентября 2022
Поглощающее состояние — состояние с вероятностью перехода в самого себя [math]p_{ii}=1[/math].
Составим матрицу [math]\mathtt{G}[/math], элементы которой [math]g_{ij}[/math] равны вероятности того, что, выйдя из [math]i[/math], попадём в поглощающее состояние [math]j[/math].
Теорема: |
[math] \mathtt{G} = N \cdot R [/math], где [math]N[/math] — фундаментальная матрица, и [math]R[/math] — матрица перехода из несущественных состояний в существенные. |
Доказательство: |
[math]\triangleright[/math] |
Пусть этот переход будет осуществлён за [math]r[/math] шагов: [math]i[/math] → [math]i_{1}[/math] → [math]i_{2}[/math] → [math]\ldots[/math] → [math]i_{r-1}[/math] → j, где все [math]i, i_{1}, \ldots i_{r-1}[/math] являются несущественными.
Тогда рассмотрим сумму [math]\sum\limits_{\forall(i_{1} \ldots i_{r-1})} {p_{i, i_{1}} \cdot p_{i_{1}, i_{2}} \cdot \ldots \cdot p_{i_{r-1}, j}} = Q^{r-1} \cdot R[/math], где [math]Q[/math] — матрица переходов между несущественными состояниями, [math]R[/math] — из несущественного в существенное.
Матрица [math]\mathtt{G}[/math] определяется их суммированием по всем длинам пути из i в j: [math]\mathtt{G} = \sum\limits_{r = 1}^{\infty}{Q^{r-1} \cdot R} = (I + Q + Q^{2} + Q^{3} + \ldots) \cdot R = NR[/math], т.к. [math](I + Q + Q^2 + \ldots) \cdot (I - Q) = I - Q + Q - Q^{2} + \ldots = I[/math], а фундаментальная матрица марковской цепи [math]N = (I - Q)^{-1}[/math] |
[math]\triangleleft[/math] |
Псевдокод
Выведем ответ: в [math]\mathtt{i}[/math]-ой строке вероятность поглощения в [math]\mathtt{i}[/math]-ом состоянии. Естественно, для несущественного состояния это [math]0[/math], в ином случае [math]\mathtt{p_i}=\left(\sum\limits_{k=1}^{n} \mathtt{G}[k][j]+1\right)/n[/math] где [math]\mathtt{j}[/math] — номер соответствующий [math]\mathtt{i}[/math]-ому состоянию в матрице [math]\mathtt{G}[/math] (т.е. под которым оно располагалось в матрице [math] \mathtt{R} [/math] т.е. значение [math]\mathtt{position}[\mathtt{i}][/math]). Прибавлять [math]1[/math] нужно т.к. вероятность поглотиться в [math]\mathtt{i}[/math]-ом поглощающем состоянии, оказавшись изначально в нем же равна [math]1[/math].
- [math]\mathtt{probability}[\mathtt{i}][/math] — вероятность поглощения в [math]\mathtt{i}[/math]-ом состоянии
- [math]\mathtt{absorbing}[\mathtt{i}][/math] — является ли [math]\mathtt{i}[/math]-е состояние поглощающим
float[] getAbsorbingProbability(absorbing: boolean[n], G: float[n][n], position: int[n]):
float probability[n]
for i = 0 to n - 1
float prob = 0
if absorbing[i]
for j = 0 to nonabs - 1
prob += G[j][position[i]]
prob++
prob /= n
probability[i] = prob
return probability
См. также
Источники информации