Определение функционального ряда — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Добавлена статья)
 
м (rollbackEdits.php mass rollback)
 
(не показано 10 промежуточных версий 4 участников)
Строка 1: Строка 1:
 +
[[Математический_анализ_1_курс#.D0.93.D0.BB.D0.B0.D0.B2.D0.B0_VI_.D0.A4.D1.83.D0.BD.D0.BA.D1.86.D0.B8.D0.BE.D0.BD.D0.B0.D0.BB.D1.8C.D0.BD.D1.8B.D0.B5_.D1.80.D1.8F.D0.B4.D1.8B|на главную <<]] [[Равномерная сходимость функционального ряда|>>]]
 
== Определения ==
 
== Определения ==
 
{{Определение
 
{{Определение
Строка 6: Строка 7:
 
}}
 
}}
  
{{Определение
+
<tex>\forall x \in E</tex> определена числовая последовательность <tex>f_1(x), f_2(x), \ldots</tex>, поэтому можно говорить о пределе соответствующей числовой последовательности. Но предел может существовать не на всем <tex>E</tex>.
|definition=
 
<tex>\forall x \in E</tex> определена числовая последовательность <tex>f_1(x), f_2(x), \ldots</tex>. Тогда можно говорить о пределе соответствующей числовой последовательности.
 
}}
 
 
 
Предел может существовать не на всем <tex>E</tex>.
 
  
 
{{Определение
 
{{Определение
Строка 28: Строка 24:
 
}}
 
}}
  
Из определения суммы функционального ряда видно, что это предел специальной последовательности {{---}} <tex>s_n</tex>. Отсюда, исседование ряда на сходимость {{---}} исследование на сходимость последовательности сумм.
+
Из определения суммы функционального ряда видно, что это предел специальной последовательности {{---}} <tex>s_n</tex>. Отсюда, исследование ряда на сходимость {{---}} исследование на сходимость последовательности сумм.
  
 
В тех местах, где это удобно, исследуются функциональные последовательности, а там, где нет, числовые ряды.  
 
В тех местах, где это удобно, исследуются функциональные последовательности, а там, где нет, числовые ряды.  
Строка 37: Строка 33:
 
<tex>s_n = \frac{1 - x^{n + 1}}{1 - x}</tex>
 
<tex>s_n = \frac{1 - x^{n + 1}}{1 - x}</tex>
 
Тогда, при <tex>n \to \infty</tex>,
 
Тогда, при <tex>n \to \infty</tex>,
$s_n \to \begin{cases}
+
<tex>s_n \to \begin{cases}
 
\frac1{1 - x}, & |x| < 1 \\
 
\frac1{1 - x}, & |x| < 1 \\
 
\infty, & |x| \geq 1 \\  
 
\infty, & |x| \geq 1 \\  
\end{cases}$
+
\end{cases}</tex>
  
 
<tex>E = R</tex>, <tex>D = (-1, 1)</tex>
 
<tex>E = R</tex>, <tex>D = (-1, 1)</tex>
  
 
На <tex>D</tex>, <tex>\sum\limits_{n = 0}^\infty x^n = \frac1{1 - x}</tex>
 
На <tex>D</tex>, <tex>\sum\limits_{n = 0}^\infty x^n = \frac1{1 - x}</tex>
 +
 +
[[Математический_анализ_1_курс|на главную <<]] [[Равномерная сходимость функционального ряда|>>]]
 +
[[Категория:Математический анализ 1 курс]]

Текущая версия на 19:12, 4 сентября 2022

на главную << >>

Определения

Определение:
На [math]E \subset \mathbb{R}[/math] задана последовательность функций [math]f_1, f_2, \ldots f_n \ldots[/math]. Тогда говорят, что имеется фукциональная последовательность.


[math]\forall x \in E[/math] определена числовая последовательность [math]f_1(x), f_2(x), \ldots[/math], поэтому можно говорить о пределе соответствующей числовой последовательности. Но предел может существовать не на всем [math]E[/math].


Определение:
Область сходимости функциональной последовательности [math]D \subset E : \{x | \forall x \in D \ f_1(x), f_2(x), \ldots[/math] — сходится [math]\}[/math]


Определение:
[math]\sum\limits_{n = 1}^\infty f_n[/math] — функциональный ряд.


Определение:
[math]\sum\limits_{n = 1}^\infty f_n(x) = \lim\limits_{n \to \infty} s_n(x)[/math], [math]x \in D[/math] — сумма числового ряда.


Из определения суммы функционального ряда видно, что это предел специальной последовательности — [math]s_n[/math]. Отсюда, исследование ряда на сходимость — исследование на сходимость последовательности сумм.

В тех местах, где это удобно, исследуются функциональные последовательности, а там, где нет, числовые ряды.

Пример

[math]\sum\limits_{n = 0}^\infty x^n[/math]

[math]s_n = \frac{1 - x^{n + 1}}{1 - x}[/math] Тогда, при [math]n \to \infty[/math], [math]s_n \to \begin{cases} \frac1{1 - x}, & |x| \lt 1 \\ \infty, & |x| \geq 1 \\ \end{cases}[/math]

[math]E = R[/math], [math]D = (-1, 1)[/math]

На [math]D[/math], [math]\sum\limits_{n = 0}^\infty x^n = \frac1{1 - x}[/math]

на главную << >>