Оператор замыкания для матроидов — различия между версиями
(→Смотри также) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 3 промежуточные версии 2 участников) | |||
Строка 14: | Строка 14: | ||
{{Определение | {{Определение | ||
− | |definition = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} [[Определение матроида|матроид]]. Тогда '''замыкание''' (англ. ''closure'') множества <tex>A \subseteq X</tex> {{---}} это множество <tex>\langle A \rangle \subseteq X</tex> такое, что <tex>\langle A \rangle = \ | + | |definition = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} [[Определение матроида|матроид]]. Тогда '''замыкание''' (англ. ''closure'') множества <tex>A \subseteq X</tex> {{---}} это множество <tex>\langle A \rangle \subseteq X</tex> такое, что <tex>\langle A \rangle = \{ x \in X \; |\; r(A \cup x) = r(A) \}</tex>, где <tex>r: 2^X \to \mathbb{N}</tex> - [[Ранговая_функция,_полумодулярность|ранговая функция]] |
}} | }} | ||
Строка 46: | Строка 46: | ||
#*: Как видим, множество <tex> H' \cup q </tex> подходит под определение <tex> p \in \langle A \cup q \rangle. </tex> | #*: Как видим, множество <tex> H' \cup q </tex> подходит под определение <tex> p \in \langle A \cup q \rangle. </tex> | ||
# По первому свойству очевидно, что <tex>\langle A \rangle \subseteq \langle A \cup e \rangle</tex>. Докажем обратное: <tex>\langle A \cup e \rangle \subseteq \langle A \rangle</tex>.<br>Воспользуемся вторым определением оператора замыкания. Рассмотрим <tex>f \in \langle A \cup e \rangle</tex>. По [[Ранговая_функция,_полумодулярность|полумодулярности ранговой функции]] имеем: <br><tex>r(A \cup e) + r(A \cup f) \geqslant r(A \cup e \cup f) + r((A \cup e) \cap (A \cup f)) \geqslant r(A \cup e \cup f) + r(A)</tex>.<br>Но <tex>r(A \cup e) = r(A)</tex> (так как <tex>e \in \langle A \rangle</tex>), значит, <tex>r(A \cup f) \geqslant r(A \cup e \cup f)</tex>, что в свою очередь влечет <tex>r(A \cup f) = r(A \cup e \cup f)</tex>.<br>Но так как <tex>f \in \langle A \cup e \rangle</tex> и <tex>e \in \langle A \rangle</tex>, то имеем <tex>r(A) = r(A \cup e) = r(A \cup e \cup f) = r(A \cup f)</tex>.<br>Следовательно, по определению, <tex>f \in \langle A \rangle</tex>. <br>В силу произвольности <tex>f: \langle A \cup e \rangle \subseteq \langle A \rangle</tex>. | # По первому свойству очевидно, что <tex>\langle A \rangle \subseteq \langle A \cup e \rangle</tex>. Докажем обратное: <tex>\langle A \cup e \rangle \subseteq \langle A \rangle</tex>.<br>Воспользуемся вторым определением оператора замыкания. Рассмотрим <tex>f \in \langle A \cup e \rangle</tex>. По [[Ранговая_функция,_полумодулярность|полумодулярности ранговой функции]] имеем: <br><tex>r(A \cup e) + r(A \cup f) \geqslant r(A \cup e \cup f) + r((A \cup e) \cap (A \cup f)) \geqslant r(A \cup e \cup f) + r(A)</tex>.<br>Но <tex>r(A \cup e) = r(A)</tex> (так как <tex>e \in \langle A \rangle</tex>), значит, <tex>r(A \cup f) \geqslant r(A \cup e \cup f)</tex>, что в свою очередь влечет <tex>r(A \cup f) = r(A \cup e \cup f)</tex>.<br>Но так как <tex>f \in \langle A \cup e \rangle</tex> и <tex>e \in \langle A \rangle</tex>, то имеем <tex>r(A) = r(A \cup e) = r(A \cup e \cup f) = r(A \cup f)</tex>.<br>Следовательно, по определению, <tex>f \in \langle A \rangle</tex>. <br>В силу произвольности <tex>f: \langle A \cup e \rangle \subseteq \langle A \rangle</tex>. | ||
− | # Следует из третьего свойства: <tex>\forall e \in \langle A \rangle : \langle A \cup e \rangle = \langle A \rangle</tex>, а значит, <tex>\langle \langle A \rangle \rangle = \langle A \cup \langle A \rangle \rangle = \langle A \cup e_1 \cup e_2 \cup e_3 \cup | + | # Следует из третьего свойства: <tex>\forall e \in \langle A \rangle : \langle A \cup e \rangle = \langle A \rangle</tex>, а значит, <tex>\langle \langle A \rangle \rangle = \langle A \cup \langle A \rangle \rangle = \langle A \cup e_1 \cup e_2 \cup e_3 \cup \ldots \rangle = \langle A \rangle</tex> (где <tex>e_1, e_2, \ldots \in \langle A \rangle</tex>) |
}} | }} | ||
Текущая версия на 19:12, 4 сентября 2022
Определение: |
Пусть матроид. Тогда замыкание (англ. closure) множества — это множество такое, что | —
Другими словами, замыкание множества
— это все элементы из а также такие которые при добавлении к некоторым независимым подмножествам не оставляют их независимыми.
Лемма: |
Пусть ранг. — матроид, . Тогда где — |
Доказательство: |
Пусть существуют множества 3-ей аксиоме Так как — максимальное независимое множество из , то то есть Согласно определению замыкания возьмём максимальное по мощности множество Поскольку то по аксиоме замены существует Если Тогда по то но в силу (противоречие с максимальностью множества ). Если то (противоречит выбору множества ). |
Определение: |
Пусть матроид. Тогда замыкание (англ. closure) множества — это множество такое, что , где - ранговая функция | —
Лемма: |
Данное определение эквивалентно предыдущему |
Доказательство: |
Пусть
|
Теорема: |
Оператор замыкания для матроидов обладает следующими свойствами:
|
Доказательство: |
|
Смотри также
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2
- Wikipedia — Matroid
- Википедия — Матроид
- sensagent.com — Matroid
- Michel X. Goemans: Advanced Combinatorial Optimization, Lecture 11: Matroid Intersection